scholarly journals Predicting Summer Arctic Sea Ice Concentration Intraseasonal Variability Using a Vector Autoregressive Model*

2016 ◽  
Vol 29 (4) ◽  
pp. 1529-1543 ◽  
Author(s):  
Lei Wang ◽  
Xiaojun Yuan ◽  
Mingfang Ting ◽  
Cuihua Li

Abstract Recent Arctic sea ice changes have important societal and economic impacts and may lead to adverse effects on the Arctic ecosystem, weather, and climate. Understanding the predictability of Arctic sea ice melting is thus an important task. A vector autoregressive (VAR) model is evaluated for predicting the summertime (May–September) daily Arctic sea ice concentration on the intraseasonal time scale, using only the daily sea ice data and without direct information of the atmosphere and ocean. The intraseasonal forecast skill of Arctic sea ice is assessed using the 1979–2012 satellite data. The cross-validated forecast skill of the VAR model is found to be superior to both the anomaly persistence and damped anomaly persistence at lead times of ~20–60 days, especially over northern Eurasian marginal seas and the Beaufort Sea. The daily forecast of ice concentration also leads to predictions of ice-free dates and September mean sea ice extent. In addition to capturing the general seasonal melt of sea ice, the model is also able to capture the interannual variability of the melting, from partial melt of the marginal sea ice in the beginning of the period to almost a complete melt in the later years. While the detailed mechanism leading to the high predictability of intraseasonal sea ice concentration needs to be further examined, the study reveals for the first time that Arctic sea ice can be predicted statistically with reasonable skill at the intraseasonal time scales given the small signal-to-noise ratio of daily data.

2019 ◽  
Vol 32 (5) ◽  
pp. 1361-1380 ◽  
Author(s):  
J. Ono ◽  
H. Tatebe ◽  
Y. Komuro

Abstract The mechanisms for and predictability of a drastic reduction in the Arctic sea ice extent (SIE) are investigated using the Model for Interdisciplinary Research on Climate (MIROC) version 5.2. Here, a control (CTRL) with forcing fixed at year 2000 levels and perfect-model ensemble prediction (PRED) experiments are conducted. In CTRL, three (model years 51, 56, and 57) drastic SIE reductions occur during a 200-yr-long integration. In year 56, the sea ice moves offshore in association with a positive phase of the summer Arctic dipole anomaly (ADA) index and melts due to heat input through the increased open water area, and the SIE drastically decreases. This provides the preconditioning for the lowest SIE in year 57 when the Arctic Ocean interior is in a warm state and the spring sea ice volume has a large negative anomaly due to drastic ice reduction in the previous year. Although the ADA is one of the key mechanisms behind sea ice reduction, it does not always cause a drastic reduction. Our analysis suggests that wind direction favoring offshore ice motion is a more important factor for drastic ice reduction events. In years experiencing drastic ice reduction events, the September SIE can be skillfully predicted in PRED started from July, but not from April. This is because the forecast errors for the July sea level pressure and those for the sea ice concentration and sea ice thickness along the ice edge are large in PRED started from April.


2020 ◽  
Vol 14 (6) ◽  
pp. 1971-1984 ◽  
Author(s):  
Rebecca J. Rolph ◽  
Daniel L. Feltham ◽  
David Schröder

Abstract. Many studies have shown a decrease in Arctic sea ice extent. It does not logically follow, however, that the extent of the marginal ice zone (MIZ), here defined as the area of the ocean with ice concentrations from 15 % to 80 %, is also changing. Changes in the MIZ extent has implications for the level of atmospheric and ocean heat and gas exchange in the area of partially ice-covered ocean and for the extent of habitat for organisms that rely on the MIZ, from primary producers like sea ice algae to seals and birds. Here, we present, for the first time, an analysis of satellite observations of pan-Arctic averaged MIZ extent. We find no trend in the MIZ extent over the last 40 years from observations. Our results indicate that the constancy of the MIZ extent is the result of an observed increase in width of the MIZ being compensated for by a decrease in the perimeter of the MIZ as it moves further north. We present simulations from a coupled sea ice–ocean mixed layer model using a prognostic floe size distribution, which we find is consistent with, but poorly constrained by, existing satellite observations of pan-Arctic MIZ extent. We provide seasonal upper and lower bounds on MIZ extent based on the four satellite-derived sea ice concentration datasets used. We find a large and significant increase (>50 %) in the August and September MIZ fraction (MIZ extent divided by sea ice extent) for the Bootstrap and OSI-450 observational datasets, which can be attributed to the reduction in total sea ice extent. Given the results of this study, we suggest that references to “rapid changes” in the MIZ should remain cautious and provide a specific and clear definition of both the MIZ itself and also the property of the MIZ that is changing.


2021 ◽  
Author(s):  
Vladimir Semenov ◽  
Tatiana Matveeva

<p>Global warming in the recent decades has been accompanied by a rapid recline of the Arctic sea ice area most pronounced in summer (10% per decade). To understand the relative contribution of external forcing and natural variability to the modern and future sea ice area changes, it is necessary to evaluate a range of long-term variations of the Arctic sea ice area in the period before a significant increase in anthropogenic emissions of greenhouse gases into the atmosphere. Available observational data on the spatiotemporal dynamics of Arctic sea ice until 1950s are characterized by significant gaps and uncertainties. In the recent years, there have appeared several reconstructions of the early 20<sup>th</sup> century Arctic sea ice area that filled the gaps by analogue methods or utilized combined empirical data and climate model’s output. All of them resulted in a stronger that earlier believed negative sea ice area anomaly in the 1940s concurrent with the early 20<sup>th</sup> century warming (ETCW) peak. In this study, we reconstruct the monthly average gridded sea ice concentration (SIC) in the first half of the 20th century using the relationship between the spatiotemporal features of SIC variability, surface air temperature over the Northern Hemisphere extratropical continents, sea surface temperature in the North Atlantic and North Pacific, and sea level pressure. In agreement with a few previous results, our reconstructed data also show a significant negative anomaly of the Arctic sea ice area in the middle of the 20th century, however with some 15% to 30% stronger amplitude, about 1.5 million km<sup>2</sup> in September and 0.7 million km<sup>2</sup> in March. The reconstruction demonstrates a good agreement with regional Arctic sea ice area data when available and suggests that ETWC in the Arctic has been accompanied by a concurrent sea ice area decline of a magnitude that have been exceeded only in the beginning of the 21<sup>st</sup> century.</p>


2014 ◽  
Vol 33 (12) ◽  
pp. 15-23
Author(s):  
Qinghua Yang ◽  
Jiping Liu ◽  
Zhanhai Zhang ◽  
Cuijuan Sui ◽  
Jianyong Xing ◽  
...  

2015 ◽  
Vol 15 (6) ◽  
pp. 3479-3495 ◽  
Author(s):  
Y. Zhao ◽  
T. Huang ◽  
L. Wang ◽  
H. Gao ◽  
J. Ma

Abstract. While some persistent organic pollutants (POPs) have been declining globally due to their worldwide ban since the 1980s, the declining trends of many of these toxic chemicals become less significant and in some cases their ambient air concentrations, e.g., polychlorinated biphenyls (PCBs), showed observable increase during the 2000s, disagreeing with their declining global emissions and environmental degradation. As part of the efforts to assess the influences of environmental factors on the long-term trend of POPs in the Arctic, step change points in the time series of ambient POP atmospheric concentrations collected from four arctic monitoring sites were examined using various statistical techniques. Results showed that the step change points of these POP data varied in different years and at different sites. Most step change points were found in 2001–2002 and 2007–2008. In particular, the step change points of many PCBs for 2007–2008 were coincident with the lowest arctic sea ice concentration occurring during the 2000s. The perturbations of air concentration and water–air exchange fluxes of several selected POPs averaged over the Arctic, simulated by a POP mass balance perturbation model, switched from negative to positive during the early 2000s, indicating a tendency for reversal of POPs from deposition to volatilization which coincides with a positive to negative reversal of arctic sea ice extent anomalies from 2001. Perturbed ice–air exchange flux of PCB 28 and 153 showed an increasing trend and a negative to positive reversal in 2007, the year with the lowest arctic sea ice concentration. On the other hand, perturbed ice–air exchange flux of α-hexachlorocyclohexane decreased over the period of 1995 to 2012, likely owing to its lower Henry's law constant which indicates its relatively lower tendency for volatilization from ice to air.


2013 ◽  
Vol 9 (6) ◽  
pp. 6515-6549 ◽  
Author(s):  
F. Klein ◽  
H. Goosse ◽  
A. Mairesse ◽  
A. de Vernal

Abstract. The consistency between a new quantitative reconstruction of Arctic sea-ice concentration based on dinocyst assemblages and the results of climate models has been investigated for the mid-Holocene. The comparison shows that the simulated sea-ice changes are weaker and spatially more homogeneous than the recorded ones. Furthermore, although the model-data agreement is relatively good in some regions such as the Labrador Sea, the skill of the models at local scale is low. The response of the models follows mainly the increase in summer insolation at large scale. This is modulated by changes in atmospheric circulation leading to differences between regions in the models that are albeit smaller than in the reconstruction. Performing simulations with data assimilation using the model LOVECLIM amplifies those regional differences, mainly through a reduction of the southward winds in the Barents Sea and an increase in the westerly winds in the Canadian Basin of the Arctic. This leads to an increase in the ice concentration in the Barents and Chukchi Seas and a better agreement with the reconstructions. This underlines the potential role of atmospheric circulation to explain the reconstructed changes during the Holocene.


2015 ◽  
Vol 15 (1) ◽  
pp. 1225-1267 ◽  
Author(s):  
Y. Zhao ◽  
T. Huang ◽  
L. Wang ◽  
H. Gao ◽  
J. Ma

Abstract. While some persistent organic pollutants (POPs) have been declining globally due to their worldwide ban since the 1980s, the declining trends of many of these toxic chemicals become less significant and in some cases their ambient air concentrations, e.g., polychlorinated biphenyls (PCBs), showed observable increase since 2000, disagreeing with their declining global emissions and environmental degradation. As part of the efforts to assess the influences of environmental factors on long-term trend of POPs in the Arctic, step change points in the time series of ambient POPs atmospheric concentrations collected from four arctic monitoring sites were examined using various statistical techniques. Results showed that the step change points of these POPs data varied in different years and at different sites. Most step change points were found in 2001–2002 and 2007–2008, respectively. In particular, the step change points of many PCBs for 2007–2008 were coincident with the lowest arctic sea ice concentration occurring in this period of time during the 2000s. The perturbations of air concentration and water-air exchange fluxes of several selected POPs averaged over the Arctic, simulated by a POPs mass balance perturbation model, switched from negative to positive from the early 2000s, indicating a tendency for reversal of POPs from deposition to volatilization which coincides with a positive to negative reversal of arctic sea ice extent anomalies from 2001. Perturbed ice-air exchange flux of PCB-28 and 153 showed an increasing trend and the negative to positive reversal in 2007, the year with the lowest arctic sea ice concentration. On the other hand, perturbed ice-air exchange flux of α-hexachlorocyclohexane (HCH) decreased over the period of 1995 through 2012, likely owing to its lower Henry's law constant which indicates its relatively lower tendency for volatilization from ice to air.


2021 ◽  
Vol 15 (7) ◽  
pp. 3207-3227
Author(s):  
Timothy Williams ◽  
Anton Korosov ◽  
Pierre Rampal ◽  
Einar Ólason

Abstract. The neXtSIM-F (neXtSIM forecast) forecasting system consists of a stand-alone sea ice model, neXtSIM (neXt-generation Sea Ice Model), forced by the TOPAZ ocean forecast and the ECMWF atmospheric forecast, combined with daily data assimilation of sea ice concentration. It uses the novel brittle Bingham–Maxwell (BBM) sea ice rheology, making it the first forecast based on a continuum model not to use the viscous–plastic (VP) rheology. It was tested in the Arctic for the time period November 2018–June 2020 and was found to perform well, although there are some shortcomings. Despite drift not being assimilated in our system, the sea ice drift is good throughout the year, being relatively unbiased, even for longer lead times like 5 d. The RMSE in speed and the total RMSE are also good for the first 3 or so days, although they both increase steadily with lead time. The thickness distribution is relatively good, although there are some regions that experience excessive thickening with negative implications for the summertime sea ice extent, particularly in the Greenland Sea. The neXtSIM-F forecasting system assimilates OSI SAF sea ice concentration products (both SSMIS and AMSR2) by modifying the initial conditions daily and adding a compensating heat flux to prevent removed ice growing back too quickly. The assimilation greatly improves the sea ice extent for the forecast duration.


2018 ◽  
Vol 11 (1) ◽  
pp. 19 ◽  
Author(s):  
Jiwon Kim ◽  
Kwangjin Kim ◽  
Jaeil Cho ◽  
Yong Kang ◽  
Hong-Joo Yoon ◽  
...  

Warming of the Arctic leads to a decrease in sea ice, and the decrease of sea ice, in turn, results in warming of the Arctic again. Several microwave sensors have provided continuously updated sea ice data for over 30 years. Many studies have been conducted to investigate the relationships between the satellite-derived sea ice concentration (SIC) of the Arctic and climatic factors associated with the accelerated warming. However, linear equations using the general circulation model (GCM) data, with low spatial resolution, cannot sufficiently cope with the problem of complexity or non-linearity. Time-series techniques are effective for one-step-ahead forecasting, but are not appropriate for future prediction for about ten or twenty years because of increasing uncertainty when forecasting multiple steps ahead. This paper describes a new approach to near-future prediction of Arctic SIC by employing a deep learning method with multi-model ensemble. We used the regional climate model (RCM) data provided in higher resolution, instead of GCM. The RCM ensemble was produced by Bayesian model averaging (BMA) to minimize the uncertainty which can arise from a single RCM. The accuracies of RCM variables were much improved by the BMA2 method, which took into consideration temporal and spatial variations to minimize the uncertainty of individual RCMs. A deep neural network (DNN) method was used to deal with the non-linear relationships between SIC and climate variables, and to provide a near-future prediction for the forthcoming 10 to 20 years. We adjusted the DNN model for optimized SIC prediction by adopting best-fitted layer structure, loss function, optimizer algorithm, and activation function. The accuracy was much improved when the DNN model was combined with BMA2 ensemble, showing the correlation coefficient of 0.888. This study provides a viable option for monitoring Arctic sea ice change of the near future.


Sign in / Sign up

Export Citation Format

Share Document