scholarly journals Linear Additive Impacts of Arctic Sea Ice Reduction and La Niña on the Northern Hemisphere Winter Climate

2016 ◽  
Vol 29 (15) ◽  
pp. 5513-5532 ◽  
Author(s):  
Zhe Han ◽  
Shuanglin Li ◽  
Jiping Liu ◽  
Yongqi Gao ◽  
Ping Zhao

Abstract Both Arctic sea ice loss and La Niña events can result in cold conditions in midlatitude Eurasia in winter. Since the two forcings sometimes occur simultaneously, determining whether they are independent of each other is undertaken first. The result suggests an overall independence. Considering possible interactions between them, their coordinated impacts on the Northern Hemisphere winter climate are then investigated based on observational data analyses, historical simulation analyses from one coupled model (MPI-ESM-LR) contributing to CMIP5, and atmospheric general circulation model sensitive experiments in ECHAM5. The results show that the impacts of the two forcings are overall linearly accumulated. In comparison with one single forcing, there is intensified cooling response in midlatitude Eurasia along with northern warmer–southern cooler dipolar temperature responses over North America. Despite the additive linearity, additive nonlinearity between the two forcings is identifiable. The nonlinearity causes midlatitude Eurasian cooling weakened by one-tenth to one-fifth as much as their individual impacts in combination. The underlying mechanisms for the weak additive nonlinearity are finally explored by transient adjustment AGCM runs with one single forcing or both the forcings switched on suddenly. The day-to-day evolution of responses suggests that the additive nonlinearity may arise initially from the forced wave dynamics and then be amplified because of the involvement of transient eddy feedbacks.

2018 ◽  
Vol 45 (7) ◽  
pp. 3255-3263 ◽  
Author(s):  
Fumiaki Ogawa ◽  
Noel Keenlyside ◽  
Yongqi Gao ◽  
Torben Koenigk ◽  
Shuting Yang ◽  
...  

2020 ◽  
Vol 47 (5) ◽  
Author(s):  
J. C. Acosta Navarro ◽  
P. Ortega ◽  
L. Batté ◽  
D. Smith ◽  
P. A. Bretonnière ◽  
...  

Author(s):  
Fei Zheng ◽  
Ji-Ping Liu ◽  
Xiang-Hui Fang ◽  
Mi-Rong Song ◽  
Chao-Yuan Yang ◽  
...  

AbstractSeveral consecutive extreme cold events impacted China during the first half of winter 2020/21, breaking the low-temperature records in many cities. How to make accurate climate predictions of extreme cold events is still an urgent issue. The synergistic effect of the warm Arctic and cold tropical Pacific has been demonstrated to intensify the intrusions of cold air from polar regions into middle-high latitudes, further influencing the cold conditions in China. However, climate models failed to predict these two ocean environments at expected lead times. Most seasonal climate forecasts only predicted the 2020/21 La Niña after the signal had already become apparent and significantly underestimated the observed Arctic sea ice loss in autumn 2020 with a 1–2 month advancement. In this work, the corresponding physical factors that may help improve the accuracy of seasonal climate predictions are further explored. For the 2020/21 La Niña prediction, through sensitivity experiments involving different atmospheric-oceanic initial conditions, the predominant southeasterly wind anomalies over the equatorial Pacific in spring of 2020 are diagnosed to play an irreplaceable role in triggering this cold event. A reasonable inclusion of atmospheric surface winds into the initialization will help the model predict La Niña development from the early spring of 2020. For predicting the Arctic sea ice loss in autumn 2020, an anomalously cyclonic circulation from the central Arctic Ocean predicted by the model, which swept abnormally hot air over Siberia into the Arctic Ocean, is recognized as an important contributor to successfully predicting the minimum Arctic sea ice extent.


2021 ◽  
Author(s):  
Francois Massonnet ◽  
Sara Fleury ◽  
Florent Garnier ◽  
Ed Blockley ◽  
Pablo Ortega Montilla ◽  
...  

<p>It is well established that winter and spring Arctic sea-ice thickness anomalies are a key source of predictability for late summer sea-ice concentration. While numerical general circulation models (GCMs) are increasingly used to perform seasonal predictions, they are not systematically taking advantage of the wealth of polar observations available. Data assimilation, the study of how to constrain GCMs to produce a physically consistent state given observations and their uncertainties, remains, therefore, an active area of research in the field of seasonal prediction. With the recent advent of satellite laser and radar altimetry, large-scale estimates of sea-ice thickness have become available for data assimilation in GCMs. However, the sea-ice thickness is never directly observed by altimeters, but rather deduced from the measured sea-ice freeboard (the height of the emerged part of the sea ice floe) based on several assumptions like the depth of snow on sea ice and its density, which are both often poorly estimated. Thus, observed sea-ice thickness estimates are potentially less reliable than sea-ice freeboard estimates. Here, using the EC-Earth3 coupled forecasting system and an ensemble Kalman filter, we perform a set of sensitivity tests to answer the following questions: (1) Does the assimilation of late spring observed sea-ice freeboard or thickness information yield more skilful predictions than no assimilation at all? (2) Should the sea-ice freeboard assimilation be preferred over sea-ice thickness assimilation? (3) Does the assimilation of observed sea-ice concentration provide further constraints on the prediction? We address these questions in the context of a realistic test case, the prediction of 2012 summer conditions, which led to the all-time record low in Arctic sea-ice extent. We finally formulate a set of recommendations for practitioners and future users of sea ice observations in the context of seasonal prediction.</p>


2016 ◽  
Vol 29 (2) ◽  
pp. 889-902 ◽  
Author(s):  
Rasmus A. Pedersen ◽  
Ivana Cvijanovic ◽  
Peter L. Langen ◽  
Bo M. Vinther

Abstract Reduction of the Arctic sea ice cover can affect the atmospheric circulation and thus impact the climate beyond the Arctic. The atmospheric response may, however, vary with the geographical location of sea ice loss. The atmospheric sensitivity to the location of sea ice loss is studied using a general circulation model in a configuration that allows combination of a prescribed sea ice cover and an active mixed layer ocean. This hybrid setup makes it possible to simulate the isolated impact of sea ice loss and provides a more complete response compared to experiments with fixed sea surface temperatures. Three investigated sea ice scenarios with ice loss in different regions all exhibit substantial near-surface warming, which peaks over the area of ice loss. The maximum warming is found during winter, delayed compared to the maximum sea ice reduction. The wintertime response of the midlatitude atmospheric circulation shows a nonuniform sensitivity to the location of sea ice reduction. While all three scenarios exhibit decreased zonal winds related to high-latitude geopotential height increases, the magnitudes and locations of the anomalies vary between the simulations. Investigation of the North Atlantic Oscillation reveals a high sensitivity to the location of the ice loss. The northern center of action exhibits clear shifts in response to the different sea ice reductions. Sea ice loss in the Atlantic and Pacific sectors of the Arctic cause westward and eastward shifts, respectively.


2001 ◽  
Vol 106 (D7) ◽  
pp. 7193-7210 ◽  
Author(s):  
Drew T. Shindell ◽  
Gavin A. Schmidt ◽  
Ron L. Miller ◽  
David Rind

1987 ◽  
Vol 9 ◽  
pp. 252-252
Author(s):  
G. Wendler ◽  
M. Jeffries ◽  
Y. Nagashima

Satellite imagery has substantially improved the quality of sea-Ice observation over the last decades. Therefore, for a 25-year period, a statistical study based on the monthly Arctic sea-ice data and the monthly mean 700 mbar maps of the Northern Hemisphere was carried out to establish the relationships between sea-ice conditions and the general circulation of the atmosphere. It was found that sea-ice conditions have two opposing effects on the zonal circulation intensity, depending on the season. Heavier than normal ice in winter causes stronger than normal zonal circulation in the subsequent months, whereas heavier than normal ice in the summer–fall causes weaker zonal circulation in the subsequent months. Analyzing the two sectors, the Atlantic and Pacific ones separately, a negative correlation was found, which means a heavy ice year in the Atlantic Ocean is normally associated with a light one in the Pacific Ocean and vice versa.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yoshihiro Tachibana ◽  
Kensuke K. Komatsu ◽  
Vladimir A. Alexeev ◽  
Lei Cai ◽  
Yuta Ando

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yoshihiro Tachibana ◽  
Kensuke K. Komatsu ◽  
Vladimir A. Alexeev ◽  
Lei Cai ◽  
Yuta Ando

2012 ◽  
Vol 6 (6) ◽  
pp. 1383-1394 ◽  
Author(s):  
F. Massonnet ◽  
T. Fichefet ◽  
H. Goosse ◽  
C. M. Bitz ◽  
G. Philippon-Berthier ◽  
...  

Abstract. We examine the recent (1979–2010) and future (2011–2100) characteristics of the summer Arctic sea ice cover as simulated by 29 Earth system and general circulation models from the Coupled Model Intercomparison Project, phase 5 (CMIP5). As was the case with CMIP3, a large intermodel spread persists in the simulated summer sea ice losses over the 21st century for a given forcing scenario. The 1979–2010 sea ice extent, thickness distribution and volume characteristics of each CMIP5 model are discussed as potential constraints on the September sea ice extent (SSIE) projections. Our results suggest first that the future changes in SSIE with respect to the 1979–2010 model SSIE are related in a complicated manner to the initial 1979–2010 sea ice model characteristics, due to the large diversity of the CMIP5 population: at a given time, some models are in an ice-free state while others are still on the track of ice loss. However, in phase plane plots (that do not consider the time as an independent variable), we show that the transition towards ice-free conditions is actually occurring in a very similar manner for all models. We also find that the year at which SSIE drops below a certain threshold is likely to be constrained by the present-day sea ice properties. In a second step, using several adequate 1979–2010 sea ice metrics, we effectively reduce the uncertainty as to when the Arctic could become nearly ice-free in summertime, the interval [2041, 2060] being our best estimate for a high climate forcing scenario.


Sign in / Sign up

Export Citation Format

Share Document