The Pacific Decadal Oscillation, Revisited

2016 ◽  
Vol 29 (12) ◽  
pp. 4399-4427 ◽  
Author(s):  
Matthew Newman ◽  
Michael A. Alexander ◽  
Toby R. Ault ◽  
Kim M. Cobb ◽  
Clara Deser ◽  
...  

Abstract The Pacific decadal oscillation (PDO), the dominant year-round pattern of monthly North Pacific sea surface temperature (SST) variability, is an important target of ongoing research within the meteorological and climate dynamics communities and is central to the work of many geologists, ecologists, natural resource managers, and social scientists. Research over the last 15 years has led to an emerging consensus: the PDO is not a single phenomenon, but is instead the result of a combination of different physical processes, including both remote tropical forcing and local North Pacific atmosphere–ocean interactions, which operate on different time scales to drive similar PDO-like SST anomaly patterns. How these processes combine to generate the observed PDO evolution, including apparent regime shifts, is shown using simple autoregressive models of increasing spatial complexity. Simulations of recent climate in coupled GCMs are able to capture many aspects of the PDO, but do so based on a balance of processes often more independent of the tropics than is observed. Finally, it is suggested that the assessment of PDO-related regional climate impacts, reconstruction of PDO-related variability into the past with proxy records, and diagnosis of Pacific variability within coupled GCMs should all account for the effects of these different processes, which only partly represent the direct forcing of the atmosphere by North Pacific Ocean SSTs.

2021 ◽  
Author(s):  
Enrico Scoccimarro ◽  
Gabriele Villarini ◽  
Silvio Gualdi ◽  
Antonio Navarra

<p>Tropical cyclones (TCs) in the North Pacific Ocean claim a major socio-economic toll on a yearly basis, and their impacts are projected to be exacerbated due to climate change and increased exposure and vulnerability. Recent examples of Typhoons Mangkhut (2018) and Hagibis (2019) are a reminder of the devastating impacts these storms can have. While the TC activity in the West North Pacific (WNP) and East North Pacific (ENP)  has been the subject of intense investigation, these basins are generally treated separately, rather than considering the storm activity in the North Pacific as a single basin. The influence of climate processes, such as the Pacific Decadal Oscillation (PDO) ,  that operate across the entire North Pacific may not have been considered by focusing on the sub-basins, especially if we are interested in multi-annual and decadal changes. It is reasonable to hypothesize that a climate mode like the PDO could play an important role in terms of TC activity in this basin. However, there is limited evidence that connects these storms and the PDO. Our expectation is that the number of TC days is related to the PDO through the modulation of this climate mode of the SST in the regions where these storms develop. In particular, during the positive phase of the PDO, warm waters close to the equator would lead to conditions favorable to the development of longer-lasting storms compared to the negative PDO phase, which is characterized by lower SST values. We believe that this connection has not been sufficiently considered in the literature because the North Pacific Ocean was not considered as a single basin but broken up into WNP and ENP, confounding the detection of a potential PDO signal. Therefore, in this work we focus on the potential role of the PDO in modulating TC activity, with emphasis on the number of TC active days in the entire North Pacific Ocean. We have selected this metric because the number of TC days provides an integrated information about TC genesis, lifespan, and tracks, and because it exhibits substantial decadal-scale oscillations in TC activity compared to other metrics used to highlight TC activity. We aim to verify the effects of different SST patterns on the spatial distribution of TC genesis in the North Pacific leading to conditions that are more/less favorable for long-lasting TCs under positive/negative PDO phases. A larger number of TC days for storms that tend to develop along the tropics during the positive PDO phase is found. When we stratify the years according to the sign of the PDO phase, the years associated with the positive phase tend to have storms that form at a lower latitude and that last longer  compared with the negative phase. On average, these storms tend to form around 14°N and to result in 240 TC days; during the negative PDO phase, TCs tend to form around 16°N, for a total of 160 TC days.</p>


2014 ◽  
Vol 41 (3) ◽  
pp. 1005-1011 ◽  
Author(s):  
Sayaka Yasunaka ◽  
Yukihiro Nojiri ◽  
Shin-ichiro Nakaoka ◽  
Tsuneo Ono ◽  
Hitoshi Mukai ◽  
...  

2021 ◽  
Author(s):  
Alison Macdonald ◽  
Sachiko Yoshida ◽  
Irina Rypina

<p>This investigation uses the tracer information provided by the 2011 direct ocean release of radio-isotopes, (<sup>137</sup>Cs, ~30-year half-life and <sup>134</sup>Cs, ~2-year half-life) from the Fukushima Dai-ichi nuclear power plant (FDNPP) together with hydrographic profiles to better understand the origins and pathways of mode waters in the North Pacific Ocean. While using information provided by radionuclide observations taken from across the basin, the main focus is on the eastern basin and results from analyses of two data sets 2015 (GO-SHIP) and 2018 (GEOTRACES) along the 152°W meridian. The study looks at how mode waters formed in the spring of 2011 have spread and mixed, and how they have not. Our radiocesium isotope samples tell a story of a surprisingly confined pathway for these waters and suggest that circulation to the north into the subpolar gyre occurs more quickly than circulation to the south into the subtropical gyre. They indicate that in spite of crossing 6000 km in their journey across the Pacific, the densest 2011 mode waters stayed together spreading by only a few hundred kilometers in the north/south direction, remained subsurface (below ~200 m) for most of the trip, and only saw the atmosphere again as they followed shoaling density surfaces into the boundary of the Alaska Gyre. The more recent data are sparse and do not allow direct measurement of the FDNPP specific <sup>134</sup>Cs, however they do provide some information on mode water evolution in the eastern North Pacific seven years after the accident. </p>


1993 ◽  
Vol 50 (12) ◽  
pp. 2608-2625 ◽  
Author(s):  
William G. Pearcy ◽  
Joseph P. Fisher ◽  
Mary M. Yoklavich

Abundances of Pacific pomfret (Brama japonica), an epipelagic fish of the North Pacific Ocean, were estimated from gillnet catches during the summers of 1978–1989. Two size modes were common: small pomfret <1 yr old, and large fish ages 1–6. Large and small fish moved northward as temperatures increased, but large fish migrated farther north, often into the cool, low-salinity waters of the Central Subarctic Pacific. Lengths of small fish were positively correlated with latitude and negatively correlated with summer surface temperature. Interannual variations in the latitude of catches correlated with surface temperatures. Large catches were made in the eastern Gulf of Alaska (51–55°N) but modes of small pomfret were absent here, and large fish were rare at these latitudes farther to the west. Pomfret grow rapidly during their first two years of life. They are pectoral fin swimmers that swim continuously. They prey largely on gonatid squids in the region of the Subarctic Current in the Gulf of Alaska during summer. No evidence was found for aggregations on a scale ≤1 km. Differences in the incidence of tapeworm, spawning seasons, and size distributions suggest the possibility of discrete populations in the North Pacific Ocean.


Sign in / Sign up

Export Citation Format

Share Document