scholarly journals The general circulation of the pacific ocean and a brief account of the oceanographic structure of the north pacific ocean: Part II — Thermal regime and influence on the climate

Atmosphere ◽  
1976 ◽  
Vol 14 (1) ◽  
pp. 1-27 ◽  
Author(s):  
S. Tabata
2020 ◽  
Vol 13 (5) ◽  
pp. 7-30
Author(s):  
A. Y. Petrov ◽  
V. N. Kostornichenko ◽  
M. M. Koskina

The article reviews the initial period of European colonization of the North Pacific Ocean and California within the context of diplomatic relations between Russia and Spain during the late 17th and early 18th centuries. It tries to understand the policies of European powers in the American Northwest and the reasons for pursuing their colonial interests there. It analyses the history of exploration of these territories, expeditions to the northern part of the Pacific Ocean, and historical maps of this region. For the first time in Russian historiography the authors touch upon the exploration of California in the 18th century.The exploration of the North Pacific Ocean, the northwestern American coast, including certain areas of California, Alaska and the Aleutian Islands has long attracted the attention of European powers. It was a process in which government authorities and private merchant companies took part. The expansion of the Spanish Empire into California was made possible in part because of the concerns of the Madrid court about the strengthening of the Russian and British empires in the North Pacific Ocean. The Spanish documents from the archives of Madrid, Seville and Simancas – the article introduces them into research communication the first time - show the validity of the fears of the Madrid court regarding the inevitable development of Russian colonization in the region. The advance of Russia to the shores of America has economic reasons: Cossacks and merchants reached the Pacific Ocean pursuing the desire to profit from the fur trade. As the economic influence expanded, the state interests of annexing territories and bringing the local population into citizenship followed behind. The territorial advance of the Russians to the Pacific Ocean was facilitated by the ambitious, but at the same time balanced diplomacy of Peter I, which managed to ensure the expansion of the borders of the Russian Empire.Spanish consolidation in certain territories in California was aimed at a possible containment of the Russian advance. Russian-Spanish relations in the Northwest Pacific at the end of the 17th – 18th centuries contributed to the nature of the subsequent development of territories in the North Pacific Ocean.


1993 ◽  
Vol 50 (12) ◽  
pp. 2608-2625 ◽  
Author(s):  
William G. Pearcy ◽  
Joseph P. Fisher ◽  
Mary M. Yoklavich

Abundances of Pacific pomfret (Brama japonica), an epipelagic fish of the North Pacific Ocean, were estimated from gillnet catches during the summers of 1978–1989. Two size modes were common: small pomfret <1 yr old, and large fish ages 1–6. Large and small fish moved northward as temperatures increased, but large fish migrated farther north, often into the cool, low-salinity waters of the Central Subarctic Pacific. Lengths of small fish were positively correlated with latitude and negatively correlated with summer surface temperature. Interannual variations in the latitude of catches correlated with surface temperatures. Large catches were made in the eastern Gulf of Alaska (51–55°N) but modes of small pomfret were absent here, and large fish were rare at these latitudes farther to the west. Pomfret grow rapidly during their first two years of life. They are pectoral fin swimmers that swim continuously. They prey largely on gonatid squids in the region of the Subarctic Current in the Gulf of Alaska during summer. No evidence was found for aggregations on a scale ≤1 km. Differences in the incidence of tapeworm, spawning seasons, and size distributions suggest the possibility of discrete populations in the North Pacific Ocean.


2001 ◽  
Vol 75 (4) ◽  
pp. 808-826 ◽  
Author(s):  
Carrie E. Schweitzer

Comprehensive analysis of the Cretaceous and Tertiary decapod crustaceans of the North Pacific Rim, focused primarily on the Brachyura, has resulted in additions to our understanding of the evolution and distribution of these animals, both in that region and globally. Hypotheses about changes in climatological and paleoceanographic conditions have not been extensively tested using decapod crustaceans, although they have been well-documented globally and for the North Pacific Ocean by sedimentological and other faunal evidence. Evidence from the occurrences of decapod crustaceans supports hypotheses obtained through these other means. Because the decapod fauna was studied independent of other faunas, it provides a means by which to compare and test patterns derived from molluscan and other faunal data. The brachyuran decapods show distinctive paleobiogeographic patterns during the Cretaceous and Tertiary, and these patterns are consistent with those documented globally in the molluscan faunas and paleoceanographic modeling. Additionally, the changes in the decapod fauna reflect patterns unique to the North Pacific Ocean. The decapod fauna is primarily comprised of a North Pacific component, a North Polar component, a component of Tethyan derivation, an amphitropical component, and a component derived from the high Southern latitudes. The Cretaceous and Tertiary decapod faunas of the North Pacific Ocean were initially dominated by taxa of North Pacific origin. Decapod diversity was highest in the Pacific Northwest of North America during the Eocene, and diversity has declined steadily since that time. Diversity in Japan was relatively low among the Decapoda until the Miocene, when diversity increased markedly due to the tropical influence of the Tethys and Indo-Pacific region. Diversity has remained high in Japan into the present time. The Cretaceous, Eocene, and Miocene were times of evolutionary bursts within the Brachyura and were separated by periods of evolutionary stasis.


1999 ◽  
Vol 56 (12) ◽  
pp. 2450-2462 ◽  
Author(s):  
Julia Qiuying Wu ◽  
William W Hsieh

Around 1976, the North Pacific Ocean underwent a climate regime shift, with significant biological consequences. To model the changes in the ocean, an ocean general circulation model was forced by the wind stress and sea surface temperature monthly climatology of the 1952-1975 period in one numerical experiment and the 1976-1988 period in another. Changes in the ocean model between the two experiments revealed how the ocean might have changed under the 1976 climate regime shift. In winter, the intensified post-1976 Aleutian Low spun up the subarctic gyre and the subtropical gyre, except in the Gulf of Alaska, where the circulation weakened. Upwelling was generally enhanced in the subarctic and downwelling enhanced in the subtropical region, with temperature changes down to 600 m. In the post-1976 period, the meridional heat transports were also enhanced: poleward in the low latitudes, equatorward in the midlatitudes, and poleward in the high latitudes.


1964 ◽  
Vol 21 (5) ◽  
pp. 941-970 ◽  
Author(s):  
John P. Tully

There are eight climatic regions from the Equator to the Arctic in the Pacific Ocean. In each region the distinct oceanographic temperature structures and their seasonal sequences are described and related to surface weather processes and transport. Procedures for observation and interpretation of data must be adapted to suit the regional models of structure and behaviour. However, a rational universal system of information presentation is feasible and is demonstrated. The concepts may be extended to other oceans.


2020 ◽  
Author(s):  
Zhichun Zhang ◽  
huijie Xue

&lt;p&gt;&amp;#160; &amp;#160;&amp;#160; &amp;#160; &amp;#160; &amp;#160; &amp;#160;Based on a nonlinear reduced gravity model simulation, formation cause of Subtropical Countercurrent(STCC) in the Pacific Ocean are investigated. The model reproduces well the characteristics of circulation of thermocline in the North pacific Ocean. The results suggest that the variation of the west boundary topography, especially the witdh of the luzon strait, play a key role on the formationg of STCC as well as the wind sress meridional gradient. When the witdh of the luzon strait gradually decrease, the STCC increase . the model results also reveal that the wind stress dipole curl of west ot the hawaii islands is key to the HLCC formation.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document