scholarly journals Modulation of Boreal Summer Intraseasonal Oscillations over the Western North Pacific by ENSO

2016 ◽  
Vol 29 (20) ◽  
pp. 7189-7201 ◽  
Author(s):  
Fei Liu ◽  
Tim Li ◽  
Hui Wang ◽  
Li Deng ◽  
Yuanwen Zhang

Abstract The authors investigate the effects of El Niño and La Niña on the intraseasonal oscillation (ISO) in the boreal summer (May–October) over the western North Pacific (WNP). It is found that during El Niño summers, the ISO is dominated by a higher-frequency oscillation with a period of around 20–40 days, whereas during La Niña summers the ISO is dominated by a lower-frequency period of around 40–70 days. The former is characterized by northwestward-propagating convection anomalies in the WNP, and the latter is characterized by northward- and eastward-propagating convective signals over the tropical Indian Ocean/Maritime Continent. The possible mechanisms through which El Niño–Southern Oscillation (ENSO)-induced background mean state changes influence the ISO behavior are examined through idealized numerical experiments. It is found that enhanced (weakened) mean moisture and easterly (westerly) vertical wind shear in the WNP during El Niño (La Niña) are the main causes of the strengthened (weakened) 20–40-day northwestward-propagating ISO mode, whereas the 40–70-day ISO initiated from the Indian Ocean can only affect the WNP during La Niña years because the dry (moist) background moisture near the Maritime Continent during El Niño (La Niña) suppresses (enhances) the ISO over the Maritime Continent, and the ISO propagates less over the Maritime Continent during El Niño years than in La Niña years.

2015 ◽  
Vol 28 (4) ◽  
pp. 1383-1395 ◽  
Author(s):  
Riyu Lu ◽  
Shu Lu

Abstract The summer precipitation anomalies over the tropical western North Pacific (WNP), which greatly affect East Asian climate, are closely related to Indian Ocean (IO) SST anomalies, and this WNP–IO relationship is widely assumed to be linear. This study indicates that the IO SST–WNP precipitation relationship is generally linear only when the IO SST anomalies are positive and not when the IO SST anomalies are negative, that is, a strongly cooler IO, in comparison with a moderately cooler IO, does not correspond to stronger precipitation enhancement over the WNP. Further analysis suggests that the phases of ENSO play a crucial role in modifying the impacts of IO SSTs on WNP anomalies. The reverse IO SST–WNP precipitation relationship, which exists without apparent ENSO development/decay, is intensified by El Niño decay through the enhancement of IO SST anomalies, but weakened by El Niño development and La Niña decay through the concurrence of SST anomalies in the tropical central and eastern Pacific. After removing El Niño developing and La Niña decaying cases, the IO SST and WNP precipitation anomalies show a clear linear relationship. Because of the effects of the phases of ENSO, the years of negative precipitation or anticyclonic anomalies over the WNP are highly concentrated over strongly warmer IO and El Niño decaying years, which is consistent with previous studies. However, the years of positive precipitation anomalies are scattered over cooler IO and moderately warmer IO years, implying a complexity of tropical SST forcing on positive WNP precipitation anomalies.


2021 ◽  
Author(s):  
Sunyong Kim ◽  
Jong-Seong Kug

Abstract The El Niño-Southern Oscillation (ENSO) has seasonally distinct impacts on the East Asian climate so that its seasonal transition depends on the phases of El Niño and La Niña. Here, we investigate the seasonal transition of surface temperature in East Asia from boreal summer to winter based on the warm/cold ENSO developing phases. During La Niña years, from summer to winter the continuous temperature drop in East Asia tends to be faster than that during El Niño, indicating a latter start and earlier termination of fall. This different seasonal transition in East Asia according to phases of ENSO is mostly explained by atmospheric responses to the seasonally-dependent tropical/subtropical precipitation forcings in ENSO developing phases. The anomalous positive precipitation in the subtropical North Pacific exists only in September and leads to the subtropical cyclonic flow during El Niño years. The resultant northerly anomalies on the left side of subtropical cyclone are favorable for transporting cold advection towards East Asia. However, the positive subtropical precipitation disappears and teleconnection to East Asia is strongly controlled by the negative precipitation anomalies in the western North Pacific, modulating the anticyclonic anomalies in East Asia during the early winter (November). Therefore, these seasonally sharp precipitation changes associated with ENSO evolution induce distinctive teleconnection changes from northerly (summer) to southerly (winter) anomalies, which eventually affect seasonal transition in East Asia. Also, the Coupled Model Intercomparison Project Phase 5 models reasonably simulate the relatively rapid temperature transition in East Asia during La Niña years, supporting the observational argument.


Atmosphere ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 183
Author(s):  
Chengyao Ye ◽  
Liping Deng ◽  
Wan-Ru Huang ◽  
Jinghua Chen

This paper explores the Madden–Julian Oscillation (MJO) modulation of tropical cyclone (TC; hereafter, MJO-TC) genesis over the South China Sea (SCS) and Western North Pacific (WNP) under different El Niño-Southern Oscillation (ENSO) conditions. Analyses used Joint Typhoon Warning Center (JTWC) best-track data, the Real-Time Multivariate MJO (RMM) index, and European Center for Medium-Range Weather Forecasts (ECMWF) Interim (ERA-Interim) reanalysis data. The results showed that the MJO has significant modulation on both the SCS and WNP TC genesis in neutral years, with more (fewer) TCs forming during the active (inactive) MJO phases. However, during the El Niño and La Niña years, the MJO-TC genesis modulation over the two regions differs from each other. Over the SCS, the MJO modulation of TC genesis is stronger in the La Niña years, while it becomes weaker in the El Niño years. Over the WNP, the MJO has a stronger influence on TC genesis in the El Niño years compared to that in the La Niña years. Related Genesis Potential Index (GPI) analysis suggests that midlevel moisture is the primary factor and vorticity is the secondary factor, for the MJO-TC genesis modulation over the SCS in the La Niña years. Over the WNP, midlevel moisture is the dominant factor for the MJO-TC genesis modulation during the El Niño years. These results can be explained by increased water vapor transport from the Bay of Bengal, associated with enhanced westerly wind anomalies, during the active phases relative to the inactive MJO phases; these conditions prevail over the SCS during the La Niña years, and over the WNP during the El Niño years.


2018 ◽  
Vol 31 (12) ◽  
pp. 4949-4961 ◽  
Author(s):  
Jau-Ming Chen ◽  
Ching-Hsuan Wu ◽  
Pei-Hsuan Chung ◽  
Chung-Hsiung Sui

Influences of intraseasonal–interannual oscillations on tropical cyclone (TC) genesis are evaluated by productivity of TC genesis ( PTCG) from the developing (TC d) and nondeveloping (TC n) precursory tropical disturbances (PTDs). A PTD is identified by a cyclonic tropical disturbance with a strong-enough intensity, a large-enough maximum center, and a long-enough lifespan. The percentage value of PTDs evolving into TC d is defined as PTCG. The analysis is performed over the western North Pacific (WNP) basin during the 1990–2014 warm season (May–September). The climatological PTCG in the WNP basin is 0.35. Counted in a common period, mean numbers of PTDs in the favorable and unfavorable conditions of climate oscillations for TC genesis [such as equatorial Rossby waves (ERWs), the Madden–Julian oscillation (MJO), and El Niño–Southern Oscillation (ENSO)], all exhibit a stable value close to the climatological mean [~31 (100 days)−1]. However, PTCG increases (decreases) during the phases of positive-vorticity (negative-vorticity) ERWs, the active (inactive) MJO, and El Niño (La Niña) years. PTCG varies from 0.17 in the most unfavorable environment (La Niña, inactive MJO, and negative-vorticity ERW) to 0.56 in the most favorable environment (El Niño, active MJO, and positive-vorticity ERW). ERWs are most effective in modulating TC genesis, especially in the negative-vorticity phases. Overall, increased PTCG is facilitated with strong and elongated 850-hPa relative vorticity overlapping a cyclonic shear line pattern, while decreased PTCG is related to weak relative vorticity. Relative vorticity acts as the most important factor to modulate PTCG, when compared with vertical wind shear and 700-hPa relative humidity.


2006 ◽  
Vol 6 ◽  
pp. 139-148 ◽  
Author(s):  
N. K. W. Cheung

Abstract. The abruptly recurving tropical cyclones over the Western North Pacific Ocean Basin during El Niño and La Niña events are studied. Temporal and spatial variations of these anomalous tracks under different phases of ENSO are shown. The anomalies of the pressure field in relation to ENSO circulation for the occurrence of the abruptly recurving cyclone tracks are investigated using fuzzy method. These are supplemented by wind field analyses. It is found that the occurrence of recurving-left (RL) and recurving-right (RR) tropical cyclones under the modification of the steering currents, including the re-adjustment of the westerly trough, the expansion or contraction of the sub-tropical high pressure, the intensifying easterly flow and the strengthening of the cross-equatorial flow, can be in El Niño or La Niña events. Evidently, there is a higher chance of occurrence of anomalous tropical cyclone trajectories in El Niño rather than La Niña events, but there is not any pronounced spatial pattern of anomalous tropical cyclone tracks. By analyzing the pressure-field, it is seen RL (RR) tropical cyclones tend to occur when the subtropical high pressure is weak (strong) in El Niño and La Niña events. More importantly, how the internal force of tropical cyclones changed by the steering current, which relies upon the relative location of tropical cyclones to the re-adjustment of the weather systems, shows when and where RL and RR tropical cyclones occur in El Niño and La Niña events.


Atmosphere ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 211 ◽  
Author(s):  
Jian Rao ◽  
Rongcai Ren ◽  
Xin Xia ◽  
Chunhua Shi ◽  
Dong Guo

Using reanalysis and the sea surface temperature (SST) analysis, the combined impact of El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) on the northern winter stratosphere is investigated. The warm and weak stratospheric polar vortex response to El Niño simply appears during positive PDO, whereas the cold and strong stratospheric polar vortex response to La Niña is preferable during negative PDO in the reanalysis. Two mechanisms may account for the enhanced stratospheric response when ENSO and PDO are in phase. First, the asymmetries of the intensity and frequency between El Niño and La Niña can be identified for the two PDO phases. Second, the extratropical SST anomalies in the North Pacific may also play a role in the varying extratropical response to ENSO. The North Pacific SST anomalies related to PDO superimpose ENSO SST anomalies when they are in phase but undermine them when they are out of phase. The superimposed North Pacific SST anomalies help to increase SST meridional gradient anomalies between tropical and extratropics, as well as to lock the local height response to ENSO. Therefore, the passages for the upward propagation of waves from the troposphere is more unimpeded when positive PDO is configured with El Niño, and vice versa when negative PDO is configured with La Niña.


2016 ◽  
Vol 29 (4) ◽  
pp. 1391-1415 ◽  
Author(s):  
Wei Zhang ◽  
Gabriel A. Vecchi ◽  
Hiroyuki Murakami ◽  
Thomas Delworth ◽  
Andrew T. Wittenberg ◽  
...  

Abstract This study aims to assess whether, and the extent to which, an increase in atmospheric resolution of the Geophysical Fluid Dynamics Laboratory (GFDL) Forecast-Oriented Low Ocean Resolution version of CM2.5 (FLOR) with 50-km resolution and the High-Resolution FLOR (HiFLOR) with 25-km resolution improves the simulation of the El Niño–Southern Oscillation (ENSO)–tropical cyclone (TC) connections in the western North Pacific (WNP). HiFLOR simulates better ENSO–TC connections in the WNP including TC track density, genesis, and landfall than FLOR in both long-term control experiments and sea surface temperature (SST)- and sea surface salinity (SSS)-restoring historical runs (1971–2012). Restoring experiments are performed with SSS and SST restored to observational estimates of climatological SSS and interannually varying monthly SST. In the control experiments of HiFLOR, an improved simulation of the Walker circulation arising from more realistic SST and precipitation is largely responsible for its better performance in simulating ENSO–TC connections in the WNP. In the SST-restoring experiments of HiFLOR, more realistic Walker circulation and steering flow during El Niño and La Niña are responsible for the improved simulation of ENSO–TC connections in the WNP. The improved simulation of ENSO–TC connections with HiFLOR arises from a better representation of SST and better responses of environmental large-scale circulation to SST anomalies associated with El Niño or La Niña. A better representation of ENSO–TC connections in HiFLOR can benefit the seasonal forecasting of TC genesis, track, and landfall; improve understanding of the interannual variation of TC activity; and provide better projection of TC activity under climate change.


2017 ◽  
Vol 30 (7) ◽  
pp. 2621-2638 ◽  
Author(s):  
Chen Li ◽  
Jing-Jia Luo ◽  
Shuanglin Li

The impacts of different types of El Niño–Southern Oscillation (ENSO) on the interannual negative correlation (seesaw) between the Somali cross-equatorial flow (CEF) and the Maritime Continent (MC) CEF during boreal summer (June–August) are investigated using the ECMWF twentieth-century reanalysis (ERA-20C) dataset and numerical experiments with a global atmospheric model [the Met Office Unified Model global atmosphere, version 6 (UM-GA6)]. The results suggest that ENSO plays a prominent role in governing the CEF-seesaw relation. A high positive correlation (0.86) exists between the MC CEF and Niño-3.4 index and also in the case of eastern Pacific (EP) El Niño, central Pacific (CP) El Niño, EP La Niña, and CP La Niña events. In contrast, a negative correlation (−0.35) exists between the Somali CEF and Niño-3.4 index, and this negative relation is significant only in the EP El Niño years. Further, the variation of the MC CEF is highly correlated with the local north–south sea surface temperature (SST) gradient, while the variation of the Somali CEF displays little relation with the local SST gradient. The Somali CEF may be remotely influenced by ENSO. The model results confirm that the EP El Niño plays a major role in causing the weakened Somali CEF via modifying the Walker cell. However, the impact of the EP El Niño on the Somali CEF differs with different seasonal background. It is also found that the interannual CEF seesaw displays a multidecadal change before and after the 1950s, which is linked with the multidecadal strengthening of the intensity of the EP ENSO.


2009 ◽  
Vol 22 (20) ◽  
pp. 5495-5510 ◽  
Author(s):  
Hisayuki Kubota ◽  
Bin Wang

Abstract The authors investigate the effects of tropical cyclones (TCs) on seasonal and interannual rainfall variability over the western North Pacific (WNP) by using rainfall data at 22 stations. The TC-induced rainfall at each station is estimated by using station data when a TC is located within the influential radius (1000 km) from the station. The spatial–temporal variability of the proportion of TC rainfall is examined primarily along the east–west island chain near 10°N (between 7° and 13°N) and the north–south island chain near 125°E (between 120° and 130°E). Along 10°N the seasonality of total rainfall is mainly determined by non-TC rainfall that is influenced by the WNP monsoon trough. The proportion of the TC rain is relatively low. During the high TC season from July to December, TC rainfall accounts for 30% of the total rainfall in Guam, 15%–23% in Koror and Yap, and less than 10% at other stations. In contrast, along 125°E where the WNP subtropical high is located, the TC rainfall accounts for 50%–60% of the total rainfall between 18° and 26°N during the peak TC season from July to October. In Hualien of Taiwan, TC rainfall exceeds 60% of the total rainfall. The interannual variability of the TC rainfall and total rainfall is primarily modulated by El Niño–Southern Oscillation (ENSO). Along 10°N, the ratio of TC rainfall versus total rainfall is higher than the climatology during developing and mature phases of El Niño (from March to the following January), whereas the ratio is below the climatology during the decaying phase of El Niño. The opposite is true for La Niña, except that the impact of La Niña is shorter in duration. Furthermore, in summer of El Niño developing years, the total seasonal rainfall increases primarily because of the increase of TC rainfall. In the ensuing autumn, an anticyclonic anomaly develops over the Philippine Sea and TC rainfall shifts eastward; as a result, the total rainfall over the Philippines and Taiwan decreases. The total rainfall to the east of 140°E, however, changes little, because the westward passage of TCs enhances TC rainfall, which offsets the decrease of non-TC rainfall. Along the meridional island chain between 120° and 130°E, the total rainfall anomaly is affected by ENSO starting from the autumn to the following spring, and the variation in TC rainfall dominates the total rainfall variation only in autumn (August–November) of ENSO years. The results from this study suggest that in the tropical WNP and subtropical East Asian monsoon regions (east of 120°E), the seasonal and interannual variations of rainfall are controlled by changes in nonlocal circulations. These changes outside the monsoon domain may substantially affect summer monsoon rainfall by changing TC genesis and tracks.


2020 ◽  
Vol 33 (17) ◽  
pp. 7371-7389
Author(s):  
Inmaculada Vega ◽  
Pedro Ribera ◽  
David Gallego

ABSTRACTThe western North Pacific summer monsoon (WNPSM) onset and withdrawal dates as well as its breaks have been determined throughout the 1949–2014 period by defining the monsoon daily directional index (MDDI). This index, developed exclusively with wind direction observations, is an upgrade of the monthly western North Pacific directional index. The onset date shows a high interannual variability, varying between early May and early August, whereas the WNPSM withdrawal shows a lower interannual variability, occurring between October and mid-November. The MDDI reflects the multibreak character of the WNPSM. Breaks, which tend to last a few weeks, are more likely to happen from mid-August to early September and from late June to mid-July. This bimodal distribution shows decadal variability. In addition, the monsoon dates determined by the MDDI show very good agreement with relationships previously described in literature, such as the influence of tropical Pacific SST on the monsoon onset/withdrawal and changes in tropical cyclone (TC) tracks related to monsoon breaks. The WNPSM tends to start earlier (later) and finish later (earlier) under eastern Pacific (EP) La Niña (El Niño) conditions, especially from the 1980s on. Central Pacific (CP) ENSO is also associated with the monsoon withdrawal, which is advanced (delayed) under CP El Niño (La Niña). TCs tend to move from the Philippine Sea to the South China Sea during active monsoon days whereas they tend to reach higher latitudes during inactive monsoon days, especially in August and July.


Sign in / Sign up

Export Citation Format

Share Document