scholarly journals Impacts of ENSO On The Seasonal Transition From Summer to Winter in East Asia

Author(s):  
Sunyong Kim ◽  
Jong-Seong Kug

Abstract The El Niño-Southern Oscillation (ENSO) has seasonally distinct impacts on the East Asian climate so that its seasonal transition depends on the phases of El Niño and La Niña. Here, we investigate the seasonal transition of surface temperature in East Asia from boreal summer to winter based on the warm/cold ENSO developing phases. During La Niña years, from summer to winter the continuous temperature drop in East Asia tends to be faster than that during El Niño, indicating a latter start and earlier termination of fall. This different seasonal transition in East Asia according to phases of ENSO is mostly explained by atmospheric responses to the seasonally-dependent tropical/subtropical precipitation forcings in ENSO developing phases. The anomalous positive precipitation in the subtropical North Pacific exists only in September and leads to the subtropical cyclonic flow during El Niño years. The resultant northerly anomalies on the left side of subtropical cyclone are favorable for transporting cold advection towards East Asia. However, the positive subtropical precipitation disappears and teleconnection to East Asia is strongly controlled by the negative precipitation anomalies in the western North Pacific, modulating the anticyclonic anomalies in East Asia during the early winter (November). Therefore, these seasonally sharp precipitation changes associated with ENSO evolution induce distinctive teleconnection changes from northerly (summer) to southerly (winter) anomalies, which eventually affect seasonal transition in East Asia. Also, the Coupled Model Intercomparison Project Phase 5 models reasonably simulate the relatively rapid temperature transition in East Asia during La Niña years, supporting the observational argument.

2016 ◽  
Vol 29 (20) ◽  
pp. 7189-7201 ◽  
Author(s):  
Fei Liu ◽  
Tim Li ◽  
Hui Wang ◽  
Li Deng ◽  
Yuanwen Zhang

Abstract The authors investigate the effects of El Niño and La Niña on the intraseasonal oscillation (ISO) in the boreal summer (May–October) over the western North Pacific (WNP). It is found that during El Niño summers, the ISO is dominated by a higher-frequency oscillation with a period of around 20–40 days, whereas during La Niña summers the ISO is dominated by a lower-frequency period of around 40–70 days. The former is characterized by northwestward-propagating convection anomalies in the WNP, and the latter is characterized by northward- and eastward-propagating convective signals over the tropical Indian Ocean/Maritime Continent. The possible mechanisms through which El Niño–Southern Oscillation (ENSO)-induced background mean state changes influence the ISO behavior are examined through idealized numerical experiments. It is found that enhanced (weakened) mean moisture and easterly (westerly) vertical wind shear in the WNP during El Niño (La Niña) are the main causes of the strengthened (weakened) 20–40-day northwestward-propagating ISO mode, whereas the 40–70-day ISO initiated from the Indian Ocean can only affect the WNP during La Niña years because the dry (moist) background moisture near the Maritime Continent during El Niño (La Niña) suppresses (enhances) the ISO over the Maritime Continent, and the ISO propagates less over the Maritime Continent during El Niño years than in La Niña years.


Atmosphere ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 211 ◽  
Author(s):  
Jian Rao ◽  
Rongcai Ren ◽  
Xin Xia ◽  
Chunhua Shi ◽  
Dong Guo

Using reanalysis and the sea surface temperature (SST) analysis, the combined impact of El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) on the northern winter stratosphere is investigated. The warm and weak stratospheric polar vortex response to El Niño simply appears during positive PDO, whereas the cold and strong stratospheric polar vortex response to La Niña is preferable during negative PDO in the reanalysis. Two mechanisms may account for the enhanced stratospheric response when ENSO and PDO are in phase. First, the asymmetries of the intensity and frequency between El Niño and La Niña can be identified for the two PDO phases. Second, the extratropical SST anomalies in the North Pacific may also play a role in the varying extratropical response to ENSO. The North Pacific SST anomalies related to PDO superimpose ENSO SST anomalies when they are in phase but undermine them when they are out of phase. The superimposed North Pacific SST anomalies help to increase SST meridional gradient anomalies between tropical and extratropics, as well as to lock the local height response to ENSO. Therefore, the passages for the upward propagation of waves from the troposphere is more unimpeded when positive PDO is configured with El Niño, and vice versa when negative PDO is configured with La Niña.


2021 ◽  
Author(s):  
Chaoming Huang ◽  
Hailong Liu ◽  
Xidong Wang ◽  
Juncheng Zuo ◽  
Ruyun Wang

Abstract Major hurricanes (MHs) in the eastern North Pacific (ENP) in 1970-2018 were clustered into 3 categories with different quantity, intensity, lifetime, translation speed, track and large-scale environmental fields. MHs in all three clusters are more active in the Pacific Decadal Oscillation (PDO) warm phase than cold phase period. There are two clusters that their relationship with El Niño Southern Oscillation (ENSO) were modulated by PDO. The first cluster generates and develops in the open ocean and has an increasing trend of annual frequency, which is more active during El Niño years than during La Niña years in the PDO cold phase, but equally active in the PDO warm phase. The second cluster generates in the nearshore and translate rapidly into the ocean, which is more active during La Niña years than during El Niño years in the PDO warm phase, but equally active in the PDO cold phase. The PDO modulation mainly result from that MHs are obviously active during La Niña years in the PDO warm phase, which can be explained by local warming sea surface temperature, lower vertical wind shear, increasing vorticity and weakening sinking branch of circulation like Hadley cell. Therefore, PDO modulation cannot be ignored when predict the activity of tropical cyclone in ENP, especially for MHs that enters the open ocean and threat the islands such as the Hawaiian Islands.


Atmosphere ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 183
Author(s):  
Chengyao Ye ◽  
Liping Deng ◽  
Wan-Ru Huang ◽  
Jinghua Chen

This paper explores the Madden–Julian Oscillation (MJO) modulation of tropical cyclone (TC; hereafter, MJO-TC) genesis over the South China Sea (SCS) and Western North Pacific (WNP) under different El Niño-Southern Oscillation (ENSO) conditions. Analyses used Joint Typhoon Warning Center (JTWC) best-track data, the Real-Time Multivariate MJO (RMM) index, and European Center for Medium-Range Weather Forecasts (ECMWF) Interim (ERA-Interim) reanalysis data. The results showed that the MJO has significant modulation on both the SCS and WNP TC genesis in neutral years, with more (fewer) TCs forming during the active (inactive) MJO phases. However, during the El Niño and La Niña years, the MJO-TC genesis modulation over the two regions differs from each other. Over the SCS, the MJO modulation of TC genesis is stronger in the La Niña years, while it becomes weaker in the El Niño years. Over the WNP, the MJO has a stronger influence on TC genesis in the El Niño years compared to that in the La Niña years. Related Genesis Potential Index (GPI) analysis suggests that midlevel moisture is the primary factor and vorticity is the secondary factor, for the MJO-TC genesis modulation over the SCS in the La Niña years. Over the WNP, midlevel moisture is the dominant factor for the MJO-TC genesis modulation during the El Niño years. These results can be explained by increased water vapor transport from the Bay of Bengal, associated with enhanced westerly wind anomalies, during the active phases relative to the inactive MJO phases; these conditions prevail over the SCS during the La Niña years, and over the WNP during the El Niño years.


2019 ◽  
Vol 32 (18) ◽  
pp. 5761-5783 ◽  
Author(s):  
Jian Rao ◽  
Chaim I. Garfinkel ◽  
Rongcai Ren

Using the CMIP5 multimodel ensemble (MME) historical experiments, the modulation of the stratospheric El Niño–Southern Oscillation (ENSO) teleconnection by the Pacific decadal oscillation (PDO) is investigated in this study. El Niño (La Niña) significantly impacts the extratropical stratosphere mainly during the positive (negative) PDO in the MME. Although the composite tropical ENSO SST intensities are similar during the positive and negative PDO in models, the Pacific–North American (PNA) responses are only significant when the PDO and ENSO are in phase. The local SST anomalies in the North Pacific can constructively (destructively) interfere with the tropical ENSO forcing to influence the extratropical eddy height anomalies when the PDO and ENSO are in (out of) phase. The difference between the positive and negative PDO in El Niño or La Niña winters filters out the tropical SST forcing, permitting the deduction of the extratropical SST contribution to the atmospheric response. The composite shows that the cold (warm) SST anomalies in the central North Pacific associated with the positive (negative) PDO have a similar impact to that of the warm (cold) SST anomalies in the tropical Pacific, exhibiting a positive (negative) PNA-like response, enhancing (weakening) the upward propagation of waves over the western coast of North America. The composite difference between the positive and negative PDO in El Niño or La Niña winters, as well as in eastern Pacific ENSO or central Pacific ENSO winters, presents a highly consistent atmospheric response pattern, which may imply a linear interference of the PDO’s impact with ENSO’s.


2021 ◽  
Vol 21 (8) ◽  
pp. 5919-5933
Author(s):  
Anbao Zhu ◽  
Haiming Xu ◽  
Jiechun Deng ◽  
Jing Ma ◽  
Shuhui Li

Abstract. Effects of the El Niño–Southern Oscillation (ENSO) on the interannual variability in spring aerosols over East Asia are investigated using the Modern Era Retrospective analysis for Research and Applications Version 2 (MERRA-2) reanalysis aerosol data. Results show that the ENSO has a crucial effect on the spring aerosols over mainland South East Asia, southern China, and the ocean south of Japan. The above-normal (below-normal) aerosols are found over these regions during the ensuing spring of El Niño (La Niña). In contrast to the local aerosol diffusion in winter, the ENSO affects East Asian aerosols in the following spring mainly via the modulation of upstream aerosol generation and transport processes. The underlying physical mechanism is that during the ensuing spring of El Niño (La Niña), the dry (wet) air and reduced (enhanced) precipitation are beneficial for the increase (reduction) in biomass burning activities over northern mainland South East Asia, resulting in more (fewer) carbonaceous aerosol emissions. On the other hand, the anomalous anticyclone (cyclone) over the north-western Pacific (WNP) associated with El Niño (La Niña) enhances (weakens) the low-level south-westerly wind from northern mainland South East Asia to southern Japan, which transports more (less) carbonaceous aerosol downstream. Anomalous precipitation plays a role in reducing aerosols over the source region, but its washout effect over the downstream region is limited. The ENSO's impact on the ensuing spring aerosols is mainly attributed to the eastern Pacific ENSO rather than the central Pacific ENSO.


2018 ◽  
Vol 31 (12) ◽  
pp. 4949-4961 ◽  
Author(s):  
Jau-Ming Chen ◽  
Ching-Hsuan Wu ◽  
Pei-Hsuan Chung ◽  
Chung-Hsiung Sui

Influences of intraseasonal–interannual oscillations on tropical cyclone (TC) genesis are evaluated by productivity of TC genesis ( PTCG) from the developing (TC d) and nondeveloping (TC n) precursory tropical disturbances (PTDs). A PTD is identified by a cyclonic tropical disturbance with a strong-enough intensity, a large-enough maximum center, and a long-enough lifespan. The percentage value of PTDs evolving into TC d is defined as PTCG. The analysis is performed over the western North Pacific (WNP) basin during the 1990–2014 warm season (May–September). The climatological PTCG in the WNP basin is 0.35. Counted in a common period, mean numbers of PTDs in the favorable and unfavorable conditions of climate oscillations for TC genesis [such as equatorial Rossby waves (ERWs), the Madden–Julian oscillation (MJO), and El Niño–Southern Oscillation (ENSO)], all exhibit a stable value close to the climatological mean [~31 (100 days)−1]. However, PTCG increases (decreases) during the phases of positive-vorticity (negative-vorticity) ERWs, the active (inactive) MJO, and El Niño (La Niña) years. PTCG varies from 0.17 in the most unfavorable environment (La Niña, inactive MJO, and negative-vorticity ERW) to 0.56 in the most favorable environment (El Niño, active MJO, and positive-vorticity ERW). ERWs are most effective in modulating TC genesis, especially in the negative-vorticity phases. Overall, increased PTCG is facilitated with strong and elongated 850-hPa relative vorticity overlapping a cyclonic shear line pattern, while decreased PTCG is related to weak relative vorticity. Relative vorticity acts as the most important factor to modulate PTCG, when compared with vertical wind shear and 700-hPa relative humidity.


2021 ◽  
pp. 1
Author(s):  
Aoyun Xue ◽  
Wenjun Zhang ◽  
Julien Boucharel ◽  
Fei-Fei Jin

AbstractAlthough the 1997/98 and 2015/16 El Niño events are considered to be the strongest on record, their subsequent La Niña events exhibited contrasted evolutions. In this study, we demonstrate that the extremely strong period of Tropical Instability Waves (TIWs) at the beginning of boreal summer of 2016 played an important role in hindering the subsequent La Niña’s development by transporting extra off-equatorial heat into the Pacific cold tongue. By comparing the TIWs contribution based on an oceanic mixed-layer heat budget analysis for the 1998 and 2016 episodes, we establish that TIW-induced nonlinear dynamical heating (NDH) is a significant contributor to the El Niño-Southern Oscillation (ENSO) phase transition in 2016. TIW-induced NDH contributed to around 0.4°C per month warming during the early boreal summer (May-June) following the 2015/16 El Niño’s peak, which is found to be an essential inhibiting factor that prevented the subsequent La Niña’s growth. A time-mean eddy kinetic energy analysis reveals that anomalous TIWs during 2016 mainly gained their energy from the baroclinic instability conversion due to a strong SST warming in the northeastern off-equatorial Pacific that promoted an increased meridional SST gradient. This highlights the importance of accurately reproducing TIW activity in ENSO simulation and the benefit of off-equatorial SST anomalies in the eastern Pacific as an independent precursor for ENSO predictions.


Agrometeoros ◽  
2018 ◽  
Vol 26 (1) ◽  
Author(s):  
Ronaldo Matzenauer ◽  
Bernadete Radin ◽  
Alberto Cargnelutti Filho

O objetivo deste trabalho foi avaliar a relação entre o fenômeno El Niño Oscilação Sul - ENOS e o rendimento de grãos de soja e de milho no Rio Grande do Sul e verificar a hipótese de que os eventos El Niño são favoráveis e os eventos La Niña são prejudiciais ao rendimento de grãos das culturas. Foram utilizados dados de rendimento de grãos dos anos agrícolas de 1974/75 a 2016/17, e relacionados com as ocorrências de eventos ENOS. Foram analisados os dados de rendimento observados na colheita e os dados estimados com a remoção da tendência tecnológica. Os resultados mostraram que não houve diferença significativa do rendimento médio de grãos de soja e de milho na comparação entre os eventos ENOS. Palavras-chave: El Niño, La Niña, safras agrícolas. Abstract – The objective of this work was to evaluate the relationship between the El Niño Southern Oscillation (ENSO) phenomenon with the grain yield of soybean and maize in Rio Grande do Sul state, Brazil and to verify the hypothesis that the El Niño events are favorable and the La Niña events are harmful to the culture’s grain yields. Were used data from the agricultural years of 1974/75 to 2016/17, and related to the occurrence of ENOS events. We analyzed income data observed at harvest and estimated data with technological tendency was removed. The results showed that there was no significant difference in the average yield of soybeans and corn in the comparison between events.


2021 ◽  
Vol 13 (14) ◽  
pp. 7987
Author(s):  
Mehmet Balcilar ◽  
Elie Bouri ◽  
Rangan Gupta ◽  
Christian Pierdzioch

We use the heterogenous autoregressive (HAR) model to compute out-of-sample forecasts of the monthly realized variance (RV) of movements of the spot and futures price of heating oil. We extend the HAR–RV model to include the role of El Niño and La Niña episodes, as captured by the Equatorial Southern Oscillation Index (EQSOI). Using data from June 1986 to April 2021, we show evidence for several model configurations that both El Niño and La Niña phases contain information useful for forecasting subsequent to the realized variance of price movements beyond the predictive value already captured by the HAR–RV model. The predictive value of La Niña phases, however, seems to be somewhat stronger than the predictive value of El Niño phases. Our results have important implications for investors, as well as from the perspective of sustainable decisions involving the environment.


Sign in / Sign up

Export Citation Format

Share Document