scholarly journals Observed Concentration Budgets of Arctic and Antarctic Sea Ice

2016 ◽  
Vol 29 (14) ◽  
pp. 5241-5249 ◽  
Author(s):  
Paul R. Holland ◽  
Noriaki Kimura

Abstract In recent decades, Antarctic sea ice has expanded slightly while Arctic sea ice has contracted dramatically. The anthropogenic contribution to these changes cannot be fully assessed unless climate models are able to reproduce them. Process-based evaluation is needed to provide a clear view of the capabilities and limitations of such models. In this study, ice concentration and drift derived from AMSR-E data during 2003–10 are combined to derive a climatology of the ice concentration budget at both poles. This enables an observational decomposition of the seasonal dynamic and thermodynamic changes in ice cover. In both hemispheres, the results show spring ice loss dominated by ice melting. In other seasons ice divergence maintains freezing in the inner pack while advection causes melting at the ice edge, as ice is transported beyond the region where it is thermodynamically sustainable. Mechanical redistribution provides an important sink of ice concentration in the central Arctic and around the Antarctic coastline. This insight builds upon existing understanding of the sea ice cycle gained from ice and climate models, and the datasets may provide a valuable tool in validating such models in the future.

2017 ◽  
Vol 30 (16) ◽  
pp. 6265-6278 ◽  
Author(s):  
Erica Rosenblum ◽  
Ian Eisenman

Observations indicate that the Arctic sea ice cover is rapidly retreating while the Antarctic sea ice cover is steadily expanding. State-of-the-art climate models, by contrast, typically simulate a moderate decrease in both the Arctic and Antarctic sea ice covers. However, in each hemisphere there is a small subset of model simulations that have sea ice trends similar to the observations. Based on this, a number of recent studies have suggested that the models are consistent with the observations in each hemisphere when simulated internal climate variability is taken into account. Here sea ice changes during 1979–2013 are examined in simulations from the most recent Coupled Model Intercomparison Project (CMIP5) as well as the Community Earth System Model Large Ensemble (CESM-LE), drawing on previous work that found a close relationship in climate models between global-mean surface temperature and sea ice extent. All of the simulations with 1979–2013 Arctic sea ice retreat as fast as observations are found to have considerably more global warming than observations during this time period. Using two separate methods to estimate the sea ice retreat that would occur under the observed level of global warming in each simulation in both ensembles, it is found that simulated Arctic sea ice retreat as fast as observations would occur less than 1% of the time. This implies that the models are not consistent with the observations. In the Antarctic, simulated sea ice expansion as fast as observations is found to typically correspond with too little global warming, although these results are more equivocal. As a result, the simulations do not capture the observed asymmetry between Arctic and Antarctic sea ice trends. This suggests that the models may be getting the right sea ice trends for the wrong reasons in both polar regions.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Nicola Scafetta ◽  
Adriano Mazzarella

Here we study the Arctic and Antarctic sea-ice area records provided by the National Snow and Ice Data Center (NSIDC). These records reveal an opposite climatic behavior: since 1978 the Arctic sea-ice area index decreased, that is, the region has warmed, while the Antarctic sea-ice area index increased, that is, the region has cooled. During the last 7 years the Arctic sea-ice area has stabilized while the Antarctic sea-ice area has increased at a rate significantly higher than during the previous decades; that is, the sea-ice area of both regions has experienced a positive acceleration. This result is quite robust because it is confirmed by alternative temperature climate indices of the same regions. We also found that a significant 4-5-year natural oscillation characterizes the climate of these sea-ice polar areas. On the contrary, we found that the CMIP5 general circulation models have predicted significant warming in both polar sea regions and failed to reproduce the strong 4-5-year oscillation. Because the CMIP5 GCM simulations are inconsistent with the observations, we suggest that important natural mechanisms of climate change are missing in the models.


2015 ◽  
Vol 56 (69) ◽  
pp. 45-52 ◽  
Author(s):  
Xi Zhao ◽  
Haoyue Su ◽  
Alfred Stein ◽  
Xiaoping Pang

AbstractThe performance of passive microwave sea-ice concentration products in the marginal ice zone and at the ice edge draws much attention in accuracy assessments. In this study, we generated 917 pseudo-ship observations from four Moderate Resolution Imaging Spectroradiometer (MODIS) images based on the Antarctic Sea Ice Processes and Climate (ASPeCt) protocol to assess the quality of the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) ARTIST (Arctic Radiation and Turbulence Interaction STudy) Sea Ice (ASI) concentrations at the ice edge in Antarctica. The results indicate that the ASI pixels in the pseudo-ASPeCt observations have a mean ice concentration of 13% and are significantly different from the well-established 15% threshold. The average distance between the pseudo-ice edge and the 15% threshold contour is ~10 km. The correlation between the sea-ice concentration (SIC), SICASI and SICMODIS values at the ice edge was considerably lower than the high coefficients obtained from a transect analysis. Underestimation of SICASI occurred in summer, whereas no clear bias was observed in winter. The proposed method provides an opportunity to generate a new source of reference data in which the spatial coverage is wider and more flexible than in traditional in situ observations.


2018 ◽  
Vol 118 ◽  
pp. 1-3 ◽  
Author(s):  
Simon T. Belt ◽  
Thomas A. Brown ◽  
Lukas Smik ◽  
Philipp Assmy ◽  
C.J. Mundy

2016 ◽  
Vol 105 ◽  
pp. 60-70 ◽  
Author(s):  
O. Lecomte ◽  
H. Goosse ◽  
T. Fichefet ◽  
P.R. Holland ◽  
P. Uotila ◽  
...  

2021 ◽  
Author(s):  
Stephanie Hay ◽  
Paul Kusnher

<p>Antarctic sea ice has gradually increased in extent over the forty-year-long satellite record, in contrast with the clear decrease in sea-ice extent seen in the Arctic over the same time period. However, state-of-the-art climate models ubiquitously project Antarctic sea-ice to decrease over the coming century, much as they do for Arctic sea-ice. Several recent years have also seen record low Antarctic sea-ice. It is therefore of interest to understand what the climate response to Antarctic sea-ice loss will be. </p><p>We have carried out new fully coupled climate model simulations to assess the response to sea-ice loss in either hemisphere separately or coincidentally under different albedo parameter settings to determine the relative importance of each. By perturbing the albedo of the snow overlying the sea ice and the albedo of the bare sea ice, we obtain a suite of simulations to assess the linearity and additivity of sea-ice loss. We find the response to sea-ice loss in each hemisphere exhibits a high degree of additivity, and can simply be decomposed into responses due to loss in each hemisphere separately. We find that the response to Antarctic sea-ice loss exceeds that of Arctic sea-ice loss in the tropics, and that Antarctic sea-ice loss leads to statistically significant Arctic warming, while the opposite is not true.</p><p>With these new simulations and one in which CO<sub>2</sub> is instantaneously doubled , we can further characterize the response to sea-ice loss from each hemisphere using an extension to classical pattern scaling that includes three controlling parameters. This allows us to simultaneously compute the sensitivity patterns to Arctic sea-ice loss, Antarctic sea-ice loss, and to tropical warming. The statistically significant response to Antarctic sea-ice loss in the Northern Hemisphere extratropics is found to be mediated by tropical warming and small amounts of Arctic sea-ice loss.</p>


2021 ◽  
Author(s):  
Francois Massonnet

<p>Polar Regions are viewed by many as "observational deserts", as in-situ measurements there are indeed scarce relative to other regions. The increasing availability of satellite observations does not entirely solve the problem, due to persistent uncertainties in the derived products. Climate models have been instrumental in completing the big picture, but they are themselves subject to errors, some of which are systematic. How to take advantage of the respective strengths of observations and models, while minimizing their respective weaknesses?  To illustrate this point, I will discuss how recent advances in data assimilation, model evaluation, and numerical modeling have enabled progress on addressing important questions in polar research, such as: what are the causes of the recent Antarctic sea ice variability? What might the future of Arctic sea ice look like? How to improve the skill of seasonal sea ice predictions? How should the existing observational network be improved at high latitudes? What are the priorities in terms of modeling? By running through these cases, I will provide support for the emerging hypothesis that "the whole is greater than the sum of its parts": treating observations and climate models as two noisy instances of the same, unknown truth, gives access to answers that would not have been possible using each source separately.</p>


2020 ◽  
Vol 14 (1) ◽  
pp. 165-182 ◽  
Author(s):  
Christine Pohl ◽  
Larysa Istomina ◽  
Steffen Tietsche ◽  
Evelyn Jäkel ◽  
Johannes Stapf ◽  
...  

Abstract. Arctic summer sea ice experiences rapid changes in its sea-ice concentration, surface albedo, and the melt pond fraction. This affects the energy balance of the region and demands an accurate knowledge of those surface characteristics in climate models. In this paper, the broadband albedo (300–3000 nm) of Arctic sea ice is derived from MEdium Resolution Imaging Spectrometer (MERIS) optical swath data by transforming the spectral albedo as an output from the Melt Pond Detector (MPD) algorithm with a newly developed spectral-to-broadband conversion (STBC). The new STBC replaces the previously applied spectral averaging method to provide a more accurate broadband albedo product, which approaches the accuracy of 0.02–0.05 required in climate simulations and allows a direct comparison to broadband albedo values from climate models. The STBC is derived empirically from spectral and broadband albedo measurements over landfast ice. It is validated on a variety of simultaneous spectral and broadband field measurements over Arctic sea ice, is compared to existing conversion techniques, and performs better than the currently published algorithms. The root-mean-square deviation (RMSD) between broadband albedo that was measured and converted by the STBC is 0.02. Other conversion techniques, the spectral averaging method and the linear combination of albedo values from four MERIS channels, result in higher RMSDs of 0.09 and 0.05, respectively. The improved MERIS-derived broadband albedo values are validated with airborne measurements. Results show a smaller RMSD of 0.04 for landfast ice than the RMSD of 0.07 for drifting ice. The MERIS-derived broadband albedo is compared to broadband albedo from ERA5 reanalysis to examine the albedo parameterization used in ERA5. Both albedo products agree over large scales and in temporal patterns. However, consistency in point-to-point comparison is rather poor, with differences up to 0.20, correlations between 0.69 and 0.79, and RMSDs in excess of 0.10. Differences in sea-ice concentration and cloud-masking uncertainties play a role, but most discrepancies can be attributed to climatological sea-ice albedo values used in ERA5. They are not adequate and need revising, in order to better simulate surface heat fluxes in the Arctic. The advantage of the resulting broadband albedo data set from MERIS over other published data sets is the accompanied data set of available melt pond fraction. Melt ponds are the main reason for the sea-ice albedo change in summer but are currently not represented in climate models and atmospheric reanalysis. Additional information about melt evolution, together with accurate albedo retrievals, can aid the challenging representation of sea-ice optical properties in those models in summer.


2017 ◽  
Vol 11 (5) ◽  
pp. 2111-2116 ◽  
Author(s):  
Christian Katlein ◽  
Stefan Hendricks ◽  
Jeffrey Key

Abstract. On the basis of a new, consistent, long-term observational satellite dataset we show that, despite the observed increase of sea ice extent in the Antarctic, absorption of solar shortwave radiation in the Southern Ocean poleward of 60° latitude is not decreasing. The observations hence show that the small increase in Antarctic sea ice extent does not compensate for the combined effect of retreating Arctic sea ice and changes in cloud cover, which both result in a total increase in solar shortwave energy deposited into the polar oceans.


Sign in / Sign up

Export Citation Format

Share Document