scholarly journals A Multiregion Model Evaluation and Attribution Study of Historical Changes in the Area Affected by Temperature and Precipitation Extremes

2016 ◽  
Vol 29 (23) ◽  
pp. 8285-8299 ◽  
Author(s):  
Andrea J. Dittus ◽  
David J. Karoly ◽  
Sophie C. Lewis ◽  
Lisa V. Alexander ◽  
Markus G. Donat

Abstract The skill of eight climate models in simulating the variability and trends in the observed areal extent of daily temperature and precipitation extremes is evaluated across five large-scale regions, using the climate extremes index (CEI) framework. Focusing on Europe, North America, Asia, Australia, and the Northern Hemisphere, results show that overall the models are generally able to simulate the decadal variability and trends of the observed temperature and precipitation components over the period 1951–2005. Climate models are able to reproduce observed increasing trends in the area experiencing warm maximum and minimum temperature extremes, as well as, to a lesser extent, increasing trends in the areas experiencing an extreme contribution of heavy precipitation to total annual precipitation for the Northern Hemisphere regions. Using simulations performed under different radiative forcing scenarios, the causes of simulated and observed trends are investigated. A clear anthropogenic signal is found in the trends in the maximum and minimum temperature components for all regions. In North America, a strong anthropogenically forced trend in the maximum temperature component is simulated despite no significant trend in the gridded observations, although a trend is detected in a reanalysis product. A distinct anthropogenic influence is also found for trends in the area affected by a much-above-average contribution of heavy precipitation to annual precipitation totals for Europe in a majority of models and to varying degrees in other Northern Hemisphere regions. However, observed trends in the area experiencing extreme total annual precipitation and extreme number of wet and dry days are not reproduced by climate models under any forcing scenario.

Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1646
Author(s):  
Quang Van Do ◽  
Hong Xuan Do ◽  
Nhu Cuong Do ◽  
An Le Ngo

Understanding changes in precipitation extremes is critical for designing mitigation measures for the potential implications of a warming climate. This study assessed changes in the magnitude and frequency of precipitation extremes over Vietnam using high-quality gridded daily precipitation observations from 1980 to 2010. The annual maxima precipitation was analyzed to detect historical changes in the magnitude of precipitation extremes, while the number of heavy precipitation events, defined using the peak-over-threshold approach, was used to assess changes in the frequency of precipitation extremes. We found a strong signal of changes in the frequency of heavy precipitation, with 28.3% of Vietnam’s landmass exhibiting significant increasing trends. The magnitude of annual maxima precipitation shows a mixed pattern of changes, with less than 10% of Vietnam’s landmass exhibiting significant (both increasing and decreasing) trends. To identify possible mechanisms driving changes in precipitation, we assessed the relationship between inter-annual variations in precipitation extremes and climate variability represented by the teleconnection patterns of the Northern Hemisphere. Using five climate indices, we found that teleconnections across the Indian and Pacific Oceans have implied large control over the characteristics of precipitation extremes across Vietnam, with up to 30% of Vietnam’s landmass exhibiting a significant relationship.


Atmosphere ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 477 ◽  
Author(s):  
Kyu Kyu Sein ◽  
Amnat Chidthaisong ◽  
and Kyaw Lwin Oo

Projected increase in frequency and severity of extreme events are important threat brought by climate change. Thus, there is a need to understand the dynamics and magnitude of climate extreme at local and regional level. This study examines the patterns of annual trends and changes of extreme daily temperature and precipitation in Myanmar for the period of 1981 to 2015 using the RClimDex 1.1 software. The trends of maximum and minimum temperature show significant warming trends (p < 0.001) across Myanmar. From 2009 to 2015, the maximum temperature anomaly has continuously increased by 0.5 °C for all years except 2011. The larger rise in both maximum and minimum temperature observed after 2000 suggests that, overall, days and nights are becoming hotter for the entirety of Myanmar over this recent period. Furthermore, our works also show that the temperature extreme indices of warm days and warm nights have increased, whereas the frequency of cool days and cool nights have decreased. Our analysis also reveals that increasing trends in precipitation anomaly were not significant during 1981–2015. On the contrary, slight increasing trends towards wetter conditions were observed with a rate of 76.52 mm/decade during the study period. The other precipitation extreme indicators—namely, annual total precipitation (PRCPTOT), heavy precipitation days (R20mm), extreme wet days precipitation (R99p), and consecutive wet days (CWD)—are consistent with warming trends. Additionally, the relationship between inter-annual variability in the climate extremes indices and Oceanic Niño Index (ONI) patterns was also examined with a focus on the influence of the El Niño-Southern Oscillation (ENSO) phenomenon.


2015 ◽  
Vol 28 (23) ◽  
pp. 9206-9220 ◽  
Author(s):  
Andrea J. Dittus ◽  
David J. Karoly ◽  
Sophie C. Lewis ◽  
Lisa V. Alexander

Abstract This study examines trends in the area affected by temperature and precipitation extremes across five large-scale regions using the climate extremes index (CEI) framework. Analyzing changes in temperature and precipitation extremes in terms of areal fraction provides information from a different perspective and can be useful for climate monitoring. Trends in five temperature and precipitation components are analyzed, calculated using a new method based on standard extreme indices. These indices, derived from daily meteorological station data, are obtained from two global land-based gridded extreme indices datasets. The four continental-scale regions of Europe, North America, Asia, and Australia are analyzed over the period from 1951 to 2010, where sufficient data coverage is available. These components are also computed for the entire Northern Hemisphere, providing the first CEI results at the hemispheric scale. Results show statistically significant increases in the percentage area experiencing much-above-average warm days and nights and much-below-average cool days and nights for all regions, with the exception of North America for maximum temperature extremes. Increases in the area affected by precipitation extremes are also found for the Northern Hemisphere regions, particularly Europe and North America.


2014 ◽  
Vol 53 (9) ◽  
pp. 2148-2162 ◽  
Author(s):  
Bárbara Tencer ◽  
Andrew Weaver ◽  
Francis Zwiers

AbstractThe occurrence of individual extremes such as temperature and precipitation extremes can have a great impact on the environment. Agriculture, energy demands, and human health, among other activities, can be affected by extremely high or low temperatures and by extremely dry or wet conditions. The simultaneous or proximate occurrence of both types of extremes could lead to even more profound consequences, however. For example, a dry period can have more negative consequences on agriculture if it is concomitant with or followed by a period of extremely high temperatures. This study analyzes the joint occurrence of very wet conditions and high/low temperature events at stations in Canada. More than one-half of the stations showed a significant positive relationship at the daily time scale between warm nights (daily minimum temperature greater than the 90th percentile) or warm days (daily maximum temperature above the 90th percentile) and heavy-precipitation events (daily precipitation exceeding the 75th percentile), with the greater frequencies found for the east and southwest coasts during autumn and winter. Cold days (daily maximum temperature below the 10th percentile) occur together with intense precipitation more frequently during spring and summer. Simulations by regional climate models show good agreement with observations in the seasonal and spatial variability of the joint distribution, especially when an ensemble of simulations was used.


2017 ◽  
Vol 30 (24) ◽  
pp. 9827-9845 ◽  
Author(s):  
Xin Zhou ◽  
Marat F. Khairoutdinov

Subdaily temperature and precipitation extremes in response to warmer SSTs are investigated on a global scale using the superparameterized (SP) Community Atmosphere Model (CAM), in which a cloud-resolving model is embedded in each CAM grid column to simulate convection explicitly. Two 10-yr simulations have been performed using present climatological sea surface temperature (SST) and perturbed SST climatology derived from the representative concentration pathway 8.5 (RCP8.5) scenario. Compared with the conventional CAM, SP-CAM simulates colder temperatures and more realistic intensity distribution of precipitation, especially for heavy precipitation. The temperature and precipitation extremes have been defined by the 99th percentile of the 3-hourly data. For temperature, the changes in the warm and cold extremes are generally consistent between CAM and SP-CAM, with larger changes in warm extremes at low latitudes and larger changes in cold extremes at mid-to-high latitudes. For precipitation, CAM predicts a uniform increase of frequency of precipitation extremes regardless of the rain rate, while SP-CAM predicts a monotonic increase of frequency with increasing rain rate and larger change of intensity for heavier precipitation. The changes in 3-hourly and daily temperature extremes are found to be similar; however, the 3-hourly precipitation extremes have a significantly larger change than daily extremes. The Clausius–Clapeyron scaling is found to be a relatively good predictor of zonally averaged changes in precipitation extremes over midlatitudes but not as good over the tropics and subtropics. The changes in precipitable water and large-scale vertical velocity are equally important to explain the changes in precipitation extremes.


2017 ◽  
Author(s):  
Hans W. Linderholm ◽  
Marie Nicolle ◽  
Pierre Francus ◽  
Konrad Gajewski ◽  
Samuli Helama ◽  
...  

Abstract. Along with Arctic amplification, changes in Arctic hydroclimate have become increasingly apparent. Reanalysis data show increasing trends in Arctic temperature and precipitation over the 20th century, but changes are not homogenous across seasons or space. The observed hydroclimate changes are expected to continue, and possibly accelerate, in the coming century, not only affecting pan-Arctic natural ecosystems and human activities, but also lower latitudes through changes in atmospheric and oceanic circulation. However, a lack of spatiotemporal observational data makes reliable quantification of Arctic hydroclimate change difficult, especially in a long-term context. To understand hydroclimate variability and the mechanisms driving observed changes, beyond the instrumental record, climate proxies are needed. Here we bring together the current understanding of Arctic hydroclimate during the past 2000 years, as inferred from natural archives and proxies and palaeoclimate model simulations. Inadequate proxy data coverage is apparent, with distinct data gaps in most of Eurasia and parts of North America, which makes robust assessments for the whole Arctic currently impossible. Hydroclimate proxies and climate models indicate that the Medieval Climate Anomaly (MCA) was anomalously wet, while conditions were in general drier during the Little Ice Age (LIA), relative to the last 2000 years. However, it is clear that there are large regional differences, which are especially evident during the LIA. Due to the spatiotemporal differences in Arctic hydroclimate, we recommend detailed regional studies, e.g. including field reconstructions, to disentangle spatial patterns and potential forcing factors. At present, it is only possible to carry out regional syntheses for a few areas of the Arctic, e.g. Fennoscandia, Greenland and western North America. To fully assess pan-Arctic hydroclimate variability for the last two millennia additional proxy records are required.


2020 ◽  
Author(s):  
Anna Sommani ◽  
Nils Weitzel ◽  
Kira Rehfeld

&lt;p&gt;The hydrological response to radiative forcing is less understood than the thermal one: many climate models have difficulties in simulating seasonal rainfall and its variability. Indeed, future precipitation projections are much more uncertain than those of temperature. However, confident projections of precipitation are of crucial importance, particularly for highly populated regions where agriculture strongly relies on seasonal rainfall, such as South and Central Asia.&lt;/p&gt;&lt;p&gt;Instrumental data from Eurasia show a negative correlation between temperature and precipitation on short timescales (10&lt;sup&gt;-3&lt;/sup&gt; to 10&lt;sup&gt;0&lt;/sup&gt; years). However, on longer timescales (10&lt;sup&gt;1&lt;/sup&gt; to 10&lt;sup&gt;3&lt;/sup&gt; years), proxy data covering the Holocene show a positive correlation between temperature and precipitation. Climate models in contrast simulate a negative correlation on all timescales. To extend previous estimates to longer time scales, we focus on the last Glacial period, characterized by colder temperature than the Holocene as well as pronounced millennial-scale climate fluctuations in the Northern Hemisphere.&lt;/p&gt;&lt;p&gt;We reconstruct temperature and precipitation from four high resolution pollen records at mid-latitudes in the Northern Hemisphere. The estimates are compared with climate simulations. The chosen proxy sites cover the East and West coasts of both the Eurasian and North American continent. We employ four different statistical reconstruction methods to assess validity and biases of each method. The differences between reconstructed and simulated temperature-precipitation relationships as well as the zonal structure of orbital- and millennial-scale variations are examined. In particular, we explore the thermodynamic and dynamic contributions to the inferred relationships between temperature and precipitation.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document