scholarly journals Variability and Confidence Intervals for the Mean of Climate Data with Short- and Long-Range Dependence

2018 ◽  
Vol 31 (15) ◽  
pp. 6135-6156 ◽  
Author(s):  
Matthew C. Bowers ◽  
Wen-wen Tung

This paper presents an adaptive procedure for estimating the variability and determining error bars as confidence intervals for climate mean states by accounting for both short- and long-range dependence. While the prevailing methods for quantifying the variability of climate means account for short-range dependence, they ignore long memory, which is demonstrated to lead to underestimated variability and hence artificially narrow confidence intervals. To capture both short- and long-range correlation structures, climate data are modeled as fractionally integrated autoregressive moving-average processes. The preferred model can be selected adaptively via an information criterion and a diagnostic visualization, and the estimated variability of the climate mean state can be computed directly from the chosen model. The procedure was demonstrated by determining error bars for four 30-yr means of surface temperatures observed at Potsdam, Germany, from 1896 to 2015. These error bars are roughly twice the width as those obtained using prevailing methods, which disregard long memory, leading to a substantive reinterpretation of differences among mean states of this particular dataset. Despite their increased width, the new error bars still suggest that a significant increase occurred in the mean temperature state of Potsdam from the 1896–1925 period to the most recent period, 1986–2015. The new wider error bars, therefore, communicate greater uncertainty in the mean state yet present even stronger evidence of a significant temperature increase. These results corroborate a need for more meticulous consideration of the correlation structures of climate data—especially of their long-memory properties—in assessing the variability and determining confidence intervals for their mean states.

Author(s):  
Jan Beran ◽  
Britta Steffens ◽  
Sucharita Ghosh

AbstractWe consider nonparametric regression for bivariate circular time series with long-range dependence. Asymptotic results for circular Nadaraya–Watson estimators are derived. Due to long-range dependence, a range of asymptotically optimal bandwidths can be found where the asymptotic rate of convergence does not depend on the bandwidth. The result can be used for obtaining simple confidence bands for the regression function. The method is illustrated by an application to wind direction data.


2000 ◽  
Vol 37 (04) ◽  
pp. 1104-1109 ◽  
Author(s):  
Tilmann Gneiting

Martin and Walker ((1997) J. Appl. Prob. 34, 657–670) proposed the power-law ρ(v) = c|v|-β, |v| ≥ 1, as a correlation model for stationary time series with long-memory dependence. A straightforward proof of their conjecture on the permissible range of c is given, and various other models for long-range dependence are discussed. In particular, the Cauchy family ρ(v) = (1 + |v/c|α)-β/α allows for the simultaneous fitting of both the long-term and short-term correlation structure within a simple analytical model. The note closes with hints at the fast and exact simulation of fractional Gaussian noise and related processes.


In Extremis ◽  
2010 ◽  
pp. 60-88 ◽  
Author(s):  
Henning W. Rust ◽  
Malaak Kallache ◽  
Hans Joachim Schellnhuber ◽  
Jürgen P. Kropp

2018 ◽  
Vol 13 (S340) ◽  
pp. 47-48
Author(s):  
V. Vipindas ◽  
Sumesh Gopinath ◽  
T. E. Girish

AbstractSolar Energetic Particles (SEPs) are high-energy particles ejected by the Sun which consist of protons, electrons and heavy ions having energies in the range of a few tens of keVs to several GeVs. The statistical features of the solar energetic particles (SEPs) during different periods of solar cycles are highly variable. In the present study we try to quantify the long-range dependence (or long-memory) of the solar energetic particles during different periods of solar cycle (SC) 23 and 24. For stochastic processes, long-range dependence or self-similarity is usually quantified by the Hurst exponent. We compare the Hurst exponent of SEP proton fluxes having energies (>1MeV to >100 MeV) for different periods, which include both solar maximum and minimum years, in order to find whether SC-dependent self-similarity exist for SEP flux.


2002 ◽  
Vol 39 (2) ◽  
pp. 370-382 ◽  
Author(s):  
Chunsheng Ma

This paper is concerned with the correlation structure of a stationary discrete time-series with long memory or long-range dependence. Given a sequence of bounded variation, we obtain necessary and sufficient conditions for a function generated from the sequence to be a proper correlation function. These conditions are applied to derive various slowly decaying correlation models. To obtain correlation models with short-range dependence from an absolutely summable sequence, a simple method is introduced.


2020 ◽  
Vol 38 (2) ◽  
Author(s):  
Somayeh Fallah ◽  
Farshid Mehrdoust

It is widely accepted that certain financial data exhibit long range dependence. We consider a fractional stochastic volatility jump diffusion model in which the stock price follows a double exponential jump diffusion process with volatility described by a long memory stochastic process and intensity rate expressed by an ordinary Cox, Ingersoll, and Ross (CIR) process. By calibrating the model with real data, we examine the performance of the model and also, we illustrate the role of long range dependence property by comparing our presented model with the Heston model.


2019 ◽  
Vol 13 (1) ◽  
pp. 29-54 ◽  
Author(s):  
Josephine Dufitinema ◽  
Seppo Pynnönen

Purpose The purpose of this paper is to examine the evidence of long-range dependence behaviour in both house price returns and volatility for fifteen main regions in Finland over the period of 1988:Q1 to 2018:Q4. These regions are divided geographically into 45 cities and sub-areas according to their postcode numbers. The studied type of dwellings is apartments (block of flats) divided into one-room, two-rooms, and more than three rooms apartments types. Design/methodology/approach For each house price return series, both parametric and semiparametric long memory approaches are used to estimate the fractional differencing parameter d in an autoregressive fractional integrated moving average [ARFIMA (p, d, q)] process. Moreover, for cities and sub-areas with significant clustering effects (autoregressive conditional heteroscedasticity [ARCH] effects), the semiparametric long memory method is used to analyse the degree of persistence in the volatility by estimating the fractional differencing parameter d in both squared and absolute price returns. Findings A higher degree of predictability was found in all three apartments types price returns with the estimates of the long memory parameter constrained in the stationary and invertible interval, implying that the returns of the studied types of dwellings are long-term dependent. This high level of persistence in the house price indices differs from other assets, such as stocks and commodities. Furthermore, the evidence of long-range dependence was discovered in the house price volatility with more than half of the studied samples exhibiting long memory behaviour. Research limitations/implications Investigating the long memory behaviour in both returns and volatility of the house prices is crucial for investment, risk and portfolio management. One reason is that the evidence of long-range dependence in the housing market returns suggests a high degree of predictability of the asset. The other reason is that the presence of long memory in the housing market volatility aids in the development of appropriate time series volatility forecasting models in this market. The study outcomes will be used in modelling and forecasting the volatility dynamics of the studied types of dwellings. The quality of the data limits the analysis and the results of the study. Originality/value To the best of the authors’ knowledge, this is the first research that assesses the long memory behaviour in the Finnish housing market. Also, it is the first study that evaluates the volatility of the Finnish housing market using data on both municipal and geographical level.


2000 ◽  
Vol 37 (4) ◽  
pp. 1104-1109 ◽  
Author(s):  
Tilmann Gneiting

Martin and Walker ((1997) J. Appl. Prob.34, 657–670) proposed the power-law ρ(v) = c|v|-β, |v| ≥ 1, as a correlation model for stationary time series with long-memory dependence. A straightforward proof of their conjecture on the permissible range of c is given, and various other models for long-range dependence are discussed. In particular, the Cauchy family ρ(v) = (1 + |v/c|α)-β/α allows for the simultaneous fitting of both the long-term and short-term correlation structure within a simple analytical model. The note closes with hints at the fast and exact simulation of fractional Gaussian noise and related processes.


Sign in / Sign up

Export Citation Format

Share Document