scholarly journals Two Leading ENSO Modes and El Niño Types in the Zebiak–Cane Model

2018 ◽  
Vol 31 (5) ◽  
pp. 1943-1962 ◽  
Author(s):  
Ruihuang Xie ◽  
Fei-Fei Jin

Modern instrumental records reveal that El Niño events differ in their spatial patterns and temporal evolutions. Attempts have been made to categorize them roughly into two main types: eastern Pacific (EP; or cold tongue) and central Pacific (CP; or warm pool) El Niño events. In this study, a modified version of the Zebiak–Cane (MZC) coupled model is used to examine the dynamics of these two types of El Niño events. Linear eigenanalysis of the model is conducted to show that there are two leading El Niño–Southern Oscillation (ENSO) modes with their SST patterns resembling those of two types of El Niño. Thus, they are referred to as the EP and CP ENSO modes. These two modes are sensitive to changes in the mean states. The heat budget analyses demonstrate that the EP (CP) mode is dominated by thermocline (zonal advective) feedback. Therefore, the weak (strong) mean wind stress and deep (shallow) mean thermocline prefer the EP (CP) ENSO mode because of the relative dominance of thermocline (zonal advective) feedback under such a mean state. Consistent with the linear stability analysis, the occurrence ratio of CP/EP El Niño events in the nonlinear simulations generally increases toward the regime where the linear CP ENSO mode has relatively higher growth rate. These analyses suggest that the coexistence of two leading ENSO modes is responsible for two types of El Niño simulated in the MZC model. This model result may provide a plausible scenario for the observed ENSO diversity.

2015 ◽  
Vol 11 (10) ◽  
pp. 1325-1333 ◽  
Author(s):  
K. Schollaen ◽  
C. Karamperidou ◽  
P. Krusic ◽  
E. Cook ◽  
G. Helle

Abstract. Indonesia's climate is dominated by the equatorial monsoon system, and has been linked to El Niño-Southern Oscillation (ENSO) events that often result in extensive droughts and floods over the Indonesian archipelago. In this study we investigate ENSO-related signals in a tree-ring δ18O record (1900–2007) of Javanese teak. Our results reveal a clear influence of Warm Pool (central Pacific) El Niño events on Javanese tree-ring δ18O, and no clear signal of Cold Tongue (eastern Pacific) El Niño events. These results are consistent with the distinct impacts of the two ENSO flavors on Javanese precipitation, and illustrate the importance of considering ENSO flavors when interpreting palaeoclimate proxy records in the tropics, as well as the potential of palaeoclimate proxy records from appropriately selected tropical regions for reconstructing past variability of. ENSO flavors.


2020 ◽  
Vol 33 (19) ◽  
pp. 8237-8260 ◽  
Author(s):  
Mandy B. Freund ◽  
Josephine R. Brown ◽  
Benjamin J. Henley ◽  
David J. Karoly ◽  
Jaclyn N. Brown

AbstractGiven the consequences and global significance of El Niño–Southern Oscillation (ENSO) events it is essential to understand the representation of El Niño diversity in climate models for the present day and the future. In recent decades, El Niño events have occurred more frequently in the central Pacific (CP). Eastern Pacific (EP) El Niño events have increased in intensity. However, the processes and future implications of these observed changes in El Niño are not well understood. Here, the frequency and intensity of El Niño events are assessed in models from phases 5 and 6 of the Coupled Model Intercomparison Project (CMIP5 and CMIP6), and results are compared to extended instrumental and multicentury paleoclimate records. Future changes of El Niño are stronger for CP events than for EP events and differ between models. Models with a projected La Niña–like mean-state warming pattern show a tendency toward more EP but fewer CP events compared to models with an El Niño–like warming pattern. Among the models with more El Niño–like warming, differences in future El Niño can be partially explained by Pacific decadal variability (PDV). During positive PDV phases, more El Niño events occur, so future frequency changes are mainly determined by projected changes during positive PDV phases. Similarly, the intensity of El Niño is strongest during positive PDV phases. Future changes to El Niño may thus depend on both mean-state warming and decadal-scale natural variability.


2015 ◽  
Vol 28 (14) ◽  
pp. 5795-5812 ◽  
Author(s):  
Wenjun Zhang ◽  
Haiyan Li ◽  
Fei-Fei Jin ◽  
Malte F. Stuecker ◽  
Andrew G. Turner ◽  
...  

Abstract Previous studies documented that a distinct southward shift of central Pacific low-level wind anomalies occurring during the ENSO decaying phase is caused by an interaction between the western Pacific annual cycle and El Niño–Southern Oscillation (ENSO) variability. The present study finds that the meridional movement of the central Pacific wind anomalies appears only during traditional eastern Pacific El Niño (EP El Niño) events rather than in central Pacific El Niño (CP El Niño) events in which sea surface temperature (SST) anomalies are confined to the central Pacific. The zonal structure of ENSO-related SST anomalies therefore has an important effect on meridional asymmetry in the associated atmospheric response and its modulation by the annual cycle. In contrast to EP El Niño events, the SST anomalies of CP El Niño events extend farther west toward the warm pool region with its climatological warm SSTs. In the warm pool region, relatively small SST anomalies are thus able to excite convection anomalies on both sides of the equator, even with a meridionally asymmetric SST background state. Therefore, almost meridionally symmetric precipitation and wind anomalies are observed over the central Pacific during the decaying phase of CP El Niño events. The SST anomaly pattern of La Niña events is similar to CP El Niño events with a reversed sign. Accordingly, no distinct southward displacement of the atmospheric response occurs over the central Pacific during the La Niña decaying phase. These results have important implications for ENSO climate impacts over East Asia, since the anomalous low-level anticyclone over the western North Pacific is an integral part of the annual cycle–modulated ENSO response.


2017 ◽  
Vol 30 (17) ◽  
pp. 6611-6627 ◽  
Author(s):  
Kang Xu ◽  
Rui Xin Huang ◽  
Weiqiang Wang ◽  
Congwen Zhu ◽  
Riyu Lu

The interannual fluctuations of the equatorial thermocline are usually associated with El Niño activity, but the linkage between the thermocline modes and El Niño is still under debate. In the present study, a mode function decomposition method is applied to the equatorial Pacific thermocline, and the results show that the first two dominant modes (M1 and M2) identify two distinct characteristics of the equatorial Pacific thermocline. The M1 reflects a basinwide zonally tilted thermocline related to the eastern Pacific (EP) El Niño, with shoaling (deepening) in the western (eastern) equatorial Pacific. The M2 represents the central Pacific (CP) El Niño, characterized by a V-shaped equatorial Pacific thermocline (i.e., deep in the central equatorial Pacific and shallow on both the western and eastern boundaries). Furthermore, both modes are stable and significant on the interannual time scale, and manifest as the major feature of the thermocline fluctuations associated with the two types of El Niño events. As good proxies of EP and CP El Niño events, thermocline-based indices clearly reveal the inherent characteristics of subsurface ocean responses during the evolution of El Niño events, which are characterized by the remarkable zonal eastward propagation of equatorial subsurface ocean temperature anomalies, particularly during the CP El Niño. Further analysis of the mixed layer heat budget suggests that the air–sea interactions determine the establishment and development stages of the CP El Niño, while the thermocline feedback is vital for its further development. These results highlight the key influence of equatorial Pacific thermocline fluctuations in conjunction with the air–sea interactions, on the CP El Niño.


2014 ◽  
Vol 10 (5) ◽  
pp. 3965-3987 ◽  
Author(s):  
K. Schollaen ◽  
C. Karamperidou ◽  
P. J. Krusic ◽  
E. R. Cook ◽  
G. Helle

Abstract. Indonesia's climate is dominated by the equatorial monsoon system, and has been linked to El Niño–Southern Oscillation (ENSO) events that often result in extensive droughts and floods over the Indonesian archipelago. In this study we investigate ENSO-related signals in a tree-ring δ18O record (1900–2007) of Javanese teak. Our results reveal a clear influence of Warm Pool (central Pacific) El Niño events on Javanese tree-ring δ18O, and no clear signal of Cold Tongue (eastern Pacific) El Niño events. These results are consistent with the distinct impacts of the two ENSO flavors on Javanese precipitation, and illustrate the importance of considering ENSO flavors when interpreting palaeoclimate proxy records in the tropics.


2012 ◽  
Vol 25 (22) ◽  
pp. 7917-7936 ◽  
Author(s):  
Samantha Stevenson ◽  
Baylor Fox-Kemper ◽  
Markus Jochum

Abstract The influence of atmospheric CO2 concentration on the El Niño–Southern Oscillation (ENSO) is explored using 800-yr integrations of the NCAR Community Climate System Model, version 3.5 (CCSM3.5), with CO2 stabilized at the a.d. 1850, 1990, and 2050 levels. Model mean state changes with increased CO2 include preferential SST warming in the eastern equatorial Pacific, a weakening of the equatorial trade winds, increased vertical ocean stratification, and a reduction in the atmospheric Hadley and oceanic subtropical overturning circulations. The annual cycle of SST strengthens with CO2, likely related to unstable air–sea interactions triggered by an increased Northern Hemisphere land–sea temperature contrast. The mean trade wind structure changes asymmetrically about the equator, with increased convergence in the Northern Hemisphere and divergence in the Southern Hemisphere leading to corresponding deepening and shoaling of the thermocline. The proportion of eastern versus central Pacific–type El Niño events increases with CO2, but the significance of the changes is relatively low; ENSO amplitude also increases with CO2, although the change is insignificant at periods longer than 4 yr. The 2–4-yr ENSO response shows an enhancement in equatorial Kelvin wave variability, suggesting that stochastic triggering of El Niño events may be favored with higher CO2. However, the seasonal cycle–ENSO interaction is also modified by the asymmetric climatological changes, and forcing by the Southern Hemisphere becomes more important with higher CO2. Finally, higher-resolution CCSM4 control simulations show that ENSO weakens with CO2 given a sufficiently long integration time. The cause for the difference in ENSO climate sensitivity is not immediately obvious but may potentially be related to changes in westerly wind bursts or other sources of high-frequency wind stress variability.


2015 ◽  
Vol 28 (19) ◽  
pp. 7561-7575 ◽  
Author(s):  
Yoo-Geun Ham ◽  
Yerim Jeong ◽  
Jong-Seong Kug

Abstract This study uses archives from phase 5 of the Coupled Model Intercomparison Project (CMIP5) to investigate changes in independency between two types of El Niño events caused by greenhouse warming. In the observations, the independency between cold tongue (CT) and warm pool (WP) El Niño events is distinctively increased in recent decades. The simulated changes in independency between the two types of El Niño events according to the CMIP5 models are quite diverse, although the observed features are simulated to some extent in several climate models. It is found that the climatological change after global warming is an essential factor in determining the changes in independency between the two types of El Niño events. For example, the independency between these events is increased after global warming when the climatological precipitation is increased mainly over the equatorial central Pacific. This climatological precipitation increase extends convective response to the east, particularly for CT El Niño events, which leads to greater differences in the spatial pattern between the two types of El Niño events to increase the El Niño independency. On the contrary, in models with decreased independency between the two types of El Niño events after global warming, climatological precipitation is increased mostly over the western Pacific. This confines the atmospheric response to the western Pacific in both El Niño events; therefore, the similarity between them is increased after global warming. In addition to the changes in the climatological state after global warming, a possible connection of the changes in the El Niño independency with the historical mean state is discussed in this paper.


2005 ◽  
Vol 18 (10) ◽  
pp. 1566-1574 ◽  
Author(s):  
A. B. Potgieter ◽  
G. L. Hammer ◽  
H. Meinke ◽  
R. C. Stone ◽  
L. Goddard

Abstract The El Niño–Southern Oscillation (ENSO) phenomenon significantly impacts rainfall and ensuing crop yields in many parts of the world. In Australia, El Niño events are often associated with severe drought conditions. However, El Niño events differ spatially and temporally in their manifestations and impacts, reducing the relevance of ENSO-based seasonal forecasts. In this analysis, three putative types of El Niño are identified among the 24 occurrences since the beginning of the twentieth century. The three types are based on coherent spatial patterns (“footprints”) found in the El Niño impact on Australian wheat yield. This bioindicator reveals aligned spatial patterns in rainfall anomalies, indicating linkage to atmospheric drivers. Analysis of the associated ocean–atmosphere dynamics identifies three types of El Niño differing in the timing of onset and location of major ocean temperature and atmospheric pressure anomalies. Potential causal mechanisms associated with these differences in anomaly patterns need to be investigated further using the increasing capabilities of general circulation models. Any improved predictability would be extremely valuable in forecasting effects of individual El Niño events on agricultural systems.


2010 ◽  
Vol 6 (4) ◽  
pp. 525-530 ◽  
Author(s):  
A. A. Tsonis ◽  
K. L. Swanson ◽  
G. Sugihara ◽  
P. A. Tsonis

Abstract. Climate change has been implicated in the success and downfall of several ancient civilizations. Here we present a synthesis of historical, climatic, and geological evidence that supports the hypothesis that climate change may have been responsible for the slow demise of Minoan civilization. Using proxy ENSO and precipitation reconstruction data in the period 1650–1980 we present empirical and quantitative evidence that El Nino causes drier conditions in the area of Crete. This result is supported by modern data analysis as well as by model simulations. Though not very strong, the ENSO-Mediterranean drying signal appears to be robust, and its overall effect was accentuated by a series of unusually strong and long-lasting El Nino events during the time of the Minoan decline. Indeed, a change in the dynamics of the El Nino/Southern Oscillation (ENSO) system occurred around 3000 BC, which culminated in a series of strong and frequent El Nino events starting at about 1450 BC and lasting for several centuries. This stressful climatic trend, associated with the gradual demise of the Minoans, is argued to be an important force acting in the downfall of this classic and long-lived civilization.


2020 ◽  
Vol 33 (12) ◽  
pp. 5239-5251
Author(s):  
Feng Jiang ◽  
Wenjun Zhang ◽  
Malte F. Stuecker ◽  
Fei-Fei Jin

AbstractPrevious studies have shown that nonlinear atmospheric interactions between ENSO and the warm pool annual cycle generates a combination mode (C-mode), which is responsible for the termination of strong El Niño events and the development of the anomalous anticyclone over the western North Pacific (WNP). However, the C-mode has experienced a remarkable decadal change in its characteristics around the early 2000s. The C-mode in both pre- and post-2000 exhibits its characteristic anomalous atmospheric circulation meridional asymmetry but with somewhat different spatial structures and time scales. During 1979–99, the C-mode pattern featured prominent westerly surface wind anomalies in the southeastern tropical Pacific and anticyclonic anomalies over the WNP. In contrast, the C-mode-associated westerly anomalies were shifted farther westward to the central Pacific and the WNP anticyclone was farther westward extended and weaker after 2000. These different C-mode patterns were accompanied by distinct climate impacts over the Indo-Pacific region. The decadal differences of the C-mode are tightly connected with the ENSO regime shift around 2000; that is, the occurrence of central Pacific (CP) El Niño events with quasi-biennial and decadal periodicities increased while the occurrence of eastern Pacific (EP) El Niño events with quasi-quadrennial periodicity decreased. The associated near-annual combination tone periodicities of the C-mode also changed in accordance with these changes in the dominant ENSO frequency between the two time periods. Numerical model experiments further confirm the impacts of the ENSO regime shift on the C-mode characteristics. These results have important implications for understanding the C-mode dynamics and improving predictions of its climate impacts.


Sign in / Sign up

Export Citation Format

Share Document