Relationship between El Niño–Southern Oscillation and the Symmetry of the Hadley Circulation: Role of the Sea Surface Temperature Annual Cycle

2018 ◽  
Vol 31 (13) ◽  
pp. 5319-5332 ◽  
Author(s):  
Yi-Peng Guo ◽  
Zhe-Min Tan

El Niño–Southern Oscillation (ENSO), which features an equatorial quasi-symmetric sea surface temperature anomaly (SSTA), is related to both the symmetric and asymmetric components of the Hadley circulation (HC) variability. However, the mechanisms for such a nonlinear HC–ENSO relationship are still unclear. Using 36-yr monthly reanalysis datasets, this study shows that the month-to-month HC variability is dominated by two principal modes, the asymmetric mode (AM) and symmetric mode (SM), both of which are highly correlated with ENSO variability. Furthermore, the relationship between the HC principal modes and the ENSO SSTA is modulated by the western Pacific SST annual cycle. When the zonal mean western Pacific SST peaks off (on) the equator, the ENSO SSTA leads to the AM (SM) of HC variability. This is because the zonal mean western Pacific SST peak provides a warmer background favorable for the SSTA to stimulate convection, indicating the important role of the combined effect of the SST annual cycle and the ENSO SSTA in affecting the HC variability. Importantly, the western Pacific SST annual cycle has no such modulation effect during central Pacific El Niño or La Niña events. The results have important implications for simulating and predicting the climatic impacts of ENSO and HC variability.

2005 ◽  
Vol 18 (11) ◽  
pp. 1773-1789 ◽  
Author(s):  
Crispian Batstone ◽  
Harry H. Hendon

Abstract To shed light onto the possible role of stochastic forcing of the El Niño–Southern Oscillation (ENSO), the characteristics of observed tropical atmospheric variability that is statistically uncoupled from slowly evolving sea surface temperature (SST) are diagnosed. The Madden–Julian oscillation (MJO) is shown to be the dominant mode of variability within these uncoupled or “stochastic” components. The dominance of the MJO is important because the MJO generates oceanic Kelvin waves and perturbs SST in the equatorial Pacific that may feed back onto the El Niño–Southern Oscillation. The seasonality present in the uncoupled zonal stress (maximum in austral summer), which reflects the seasonality of MJO activity, is also transmitted to the eastern Pacific thermocline variability by these Kelvin waves. Hence, the MJO component of the uncoupled stress could plausibly contribute to the observed phase locking of ENSO to the seasonal cycle. During an El Niño event, maximum uncoupled zonal stress variance shifts eastward from the western Pacific along with the coupled surface westerly wind and warm SST anomalies. The MJO accounts for less than half of this low-frequency behavior of the uncoupled stress but accounts for nearly two-thirds of the resultant thermocline variability. The uncoupled zonal stress also exhibits weak, westerly anomalies in the western Pacific some 8–10 months prior to El Niño, which is mostly accounted for by the low-frequency (period ≫ 50 days) behavior of the MJO. This low-frequency behavior possibly explains why observed El Niño variability is recovered when weakly damped models are forced with similar estimates of observed stochastic zonal stress.


2000 ◽  
Vol 203 (15) ◽  
pp. 2311-2322 ◽  
Author(s):  
B. Culik ◽  
J. Hennicke ◽  
T. Martin

We satellite-tracked five Humboldt penguins during the strong 1997/98 El Nino Southern Oscillation (ENSO) from their breeding island Pan de Azucar (26 degrees 09′S, 70 degrees 40′W) in Northern Chile and related their activities at sea to satellite-derived information on sea surface temperature (SST), sea surface temperature anomaly (SSTA), wind direction and speed, chlorophyll a concentrations and statistical data on fishery landings. We found that Humboldt penguins migrated by up to 895 km as marine productivity decreased. The total daily dive duration was highly correlated with SSTA, ranging from 3.1 to 12.5 h when the water was at its warmest (+4 degrees C). Birds travelled between 2 and 116 km every day, travelling further when SSTA was highest. Diving depths (maximum 54 m), however, were not increased with respect to previous years. Two penguins migrated south and, independently of each other, located an area of high chlorophyll a concentration 150 km off the coast. Humboldt penguins seem to use day length, temperature gradients, wind direction and olfaction to adapt to changing environmental conditions and to find suitable feeding grounds. This makes Humboldt penguins biological in situ detectors of highly productive marine areas, with a potential use in the verification of trends detected by remote sensors on board satellites.


2007 ◽  
Vol 20 (13) ◽  
pp. 2872-2880 ◽  
Author(s):  
Gary Meyers ◽  
Peter McIntosh ◽  
Lidia Pigot ◽  
Mike Pook

Abstract The Indian Ocean zonal dipole is a mode of variability in sea surface temperature that seriously affects the climate of many nations around the Indian Ocean rim, as well as the global climate system. It has been the subject of increasing research, and sometimes of scientific debate concerning its existence/nonexistence and dependence/independence on/from the El Niño–Southern Oscillation, since it was first clearly identified in Nature in 1999. Much of the debate occurred because people did not agree on what years are the El Niño or La Niña years, not to mention the newly defined years of the positive or negative dipole. A method that identifies when the positive or negative extrema of the El Niño–Southern Oscillation and Indian Ocean dipole occur is proposed, and this method is used to classify each year from 1876 to 1999. The method is statistical in nature, but has a strong basis on the oceanic physical mechanisms that control the variability of the near-equatorial Indo-Pacific basin. Early in the study it was found that some years could not be clearly classified due to strong decadal variation; these years also must be recognized, along with the reason for their ambiguity. The sensitivity of the classification of years is tested by calculating composite maps of the Indo-Pacific sea surface temperature anomaly and the probability of below median Australian rainfall for different categories of the El Niño–Indian Ocean relationship.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jialin Lin ◽  
Taotao Qian

AbstractThe El Nino-Southern Oscillation (ENSO) is the dominant interannual variability of Earth’s climate system and plays a central role in global climate prediction. Outlooks of ENSO and its impacts often follow a two-tier approach: predicting ENSO sea surface temperature anomaly in tropical Pacific and then predicting its global impacts. However, the current picture of ENSO global impacts widely used by forecasting centers and atmospheric science textbooks came from two earliest surface station datasets complied 30 years ago, and focused on the extreme phases rather than the whole ENSO lifecycle. Here, we demonstrate a new picture of the global impacts of ENSO throughout its whole lifecycle based on the rich latest satellite, in situ and reanalysis datasets. ENSO impacts are much wider than previously thought. There are significant impacts unknown in the previous picture over Europe, Africa, Asia and North America. The so-called “neutral years” are not neutral, but are associated with strong sea surface temperature anomalies in global oceans outside the tropical Pacific, and significant anomalies of land surface air temperature and precipitation over all the continents.


2017 ◽  
Vol 30 (24) ◽  
pp. 10155-10178 ◽  
Author(s):  
Claudia E. Wieners ◽  
Henk A. Dijkstra ◽  
Will P. M. de Ruijter

In recent years it has been proposed that a negative (positive) Indian Ocean dipole (IOD) in boreal autumn favors an El Niño (La Niña) at a lead time of 15 months. Observational analysis suggests that a negative IOD might be accompanied by easterly anomalies over the western Pacific. Such easterlies can enhance the western Pacific warm water volume, thus favoring El Niño development from the following boreal spring onward. However, a Gill-model response to a negative IOD forcing would lead to nearly zero winds over the western Pacific. The authors hypothesize that a negative IOD—or even a cool western Indian Ocean alone—leads to low-level air convergence and hence enhanced convectional heating over the Maritime Continent, which in turn amplifies the wind convergence so as to cause easterly winds over the western Pacific. This hypothesis is tested by coupling an idealized Indian Ocean model and a convective feedback model over the Maritime Continent to the Zebiak–Cane model. It is found that, for a sufficiently strong convection feedback, a negative (positive) IOD indeed forces easterlies (westerlies) over the western Pacific. The contribution from the eastern IOD pole dominates. IOD variability is found to destabilize the El Niño–Southern Oscillation (ENSO) mode, whereas Indian Ocean basinwide warming (IOB) variability dampens ENSO, even in the presence of convection. The influence of the Indian Ocean on the spectral properties of ENSO is dominated by the IOB, while the IOD is a better predictor for individual ENSO events.


Sign in / Sign up

Export Citation Format

Share Document