scholarly journals ENSO-Related Global Ocean Heat Content Variations

2018 ◽  
Vol 32 (1) ◽  
pp. 45-68 ◽  
Author(s):  
Quran Wu ◽  
Xuebin Zhang ◽  
John A. Church ◽  
Jianyu Hu

Abstract The modulation of the full-depth global integrated ocean heat content (GOHC) by El Niño–Southern Oscillation (ENSO) has been estimated in various studies. However, the quantitative results and the mechanisms at work remain uncertain. Here, a dynamically consistent ocean state estimate is utilized to study the large-scale integrated heat content variations during ENSO events for the global ocean. The full-depth GOHC exhibits a cooling tendency during the peak and decaying phases of El Niño, which is a result of the negative surface heat flux (SHF) anomaly in the tropics (30°S–30°N), partially offset by the positive SHF anomaly at higher latitudes. The tropical SHF anomaly acts as a lagged response to damp the convergence of oceanic heat transport, which redistributes heat from the extratropics and the subsurface layers (100–440 m) into the upper tropical oceans (0–100 m) during the onset and peak of El Niño. These results highlight the global nature of the oceanic heat redistribution during ENSO events, as well as how the redistribution process affects the full-depth GOHC. The meridional heat exchange across 30°S and 30°N is driven by ocean current anomalies, while multiple processes contribute to the vertical heat exchange across 100 m simultaneously. Heat advection due to unbalanced mass transport is distinguished from the mass balanced one, with significant contributions from the meridional and zonal overturning cells being identified for the latter in the vertical direction. Results presented here have implications for monitoring the planetary energy budget and evaluating ENSO’s global imprints on ocean heat content in different estimates.

Ocean Science ◽  
2016 ◽  
Vol 12 (6) ◽  
pp. 1165-1177 ◽  
Author(s):  
Christopher G. Piecuch ◽  
Katherine J. Quinn

Abstract. Previous studies show that nonseasonal variations in global-mean sea level (GMSL) are significantly correlated with El Niño–Southern Oscillation (ENSO). However, it has remained unclear to what extent these ENSO-related GMSL fluctuations correspond to steric (i.e., density) or barystatic (mass) effects. Here we diagnose the GMSL budget for ENSO events observationally using data from profiling floats, satellite gravimetry, and radar altimetry during 2005–2015. Steric and barystatic effects make comparable contributions to the GMSL budget during ENSO, in contrast to previous interpretations based largely on hydrological models, which emphasize the barystatic component. The steric contributions reflect changes in global ocean heat content, centered on the Pacific. Distributions of ocean heat storage in the Pacific arise from a mix of diabatic and adiabatic effects. Results have implications for understanding the surface warming slowdown and demonstrate the usefulness of the Global Ocean Observing System for constraining Earth's hydrological cycle and radiation imbalance.


2016 ◽  
Author(s):  
Christopher G. Piecuch ◽  
Katherine J. Quinn

Abstract. Previous studies show that nonseasonal variations in global-mean sea level (GMSL) are significantly correlated with El Niño-Southern Oscillation (ENSO). However, it has remained unclear to what extent these ENSO-related GMSL fluctuations correspond to steric (i.e., density) or barystatic (mass) effects. Here we diagnose the GMSL budget for ENSO events observationally using data from profiling floats, satellite gravimetry, and radar altimetry during 2005–2015. Steric and barystatic effects make comparable contributions to the GMSL budget during ENSO, in contrast to previous interpretations based largely on hydrological models, which emphasize the barystatic component. The steric contributions reflect changes in global ocean heat content, centered on the Pacific. Distributions of ocean heat storage in the Pacific arise from a mix of diabatic and adiabatic effects. Results have implications for understanding the surface warming slowdown and demonstrate the usefulness of the Global Ocean Observing System for constraining Earth's hydrological cycle and radiation imbalance.


2008 ◽  
Vol 21 (1) ◽  
pp. 84-93 ◽  
Author(s):  
Jing-Jia Luo ◽  
Sebastien Masson ◽  
Swadhin K. Behera ◽  
Toshio Yamagata

Abstract Using a fully coupled global ocean–atmosphere general circulation model assimilating only sea surface temperature, the authors found for the first time that several El Niño–Southern Oscillation (ENSO) events over the past two decades can be predicted at lead times of up to 2 yr. The El Niño condition in the 1997/98 winter can be predicted to some extent up to about a 1½-yr lead but with a weak intensity and large phase delay in the prediction of the onset of this exceptionally strong event. This is attributed to the influence of active and intensive stochastic westerly wind bursts during late 1996 to mid-1997, which are generally unpredictable at seasonal time scales. The cold signals in the 1984/85 and 1999/2000 winters during the peak phases of the past two long-lasting La Niña events are predicted well up to a 2-yr lead. Amazingly, the mild El Niño–like event of 2002/03 is also predicted well up to a 2-yr lead, suggesting a link between the prolonged El Niño and the tropical Pacific decadal variability. Seasonal climate anomalies over vast parts of the globe during specific ENSO years are also realistically predicted up to a 2-yr lead for the first time.


2014 ◽  
Vol 27 (19) ◽  
pp. 7230-7249 ◽  
Author(s):  
Caihong Wen ◽  
Arun Kumar ◽  
Yan Xue ◽  
M. J. McPhaden

Abstract The characteristics of El Niño–Southern Oscillation (ENSO) variability have experienced notable changes since the late 1990s, including a breakdown of the zonal mean upper-ocean heat content as a precursor for ENSO. These changes also initiated a debate on the role of thermocline variations on the development of ENSO events since the beginning of the twenty-first century. In this study, the connection between thermocline variations and El Niño and La Niña events is examined separately for the 1980–98 and 1999–2012 periods. The analysis highlights the important role of thermocline variations in modulating ENSO evolutions in both periods. It is found that thermocline variation averaged in the central tropical Pacific, including both equatorial and off-equatorial regions, is a good precursor for ENSO evolutions before and after 1999, while the traditional basinwide mean of equatorial thermocline variation is a good precursor only before 1999. The new precursor, including both high-frequency variability in equatorial regions and low-frequency variability in off-equatorial regions, is found to be indicative of multiyear persistent warm and cold conditions in the tropical Pacific. Further, it is found that the strength of the subtropical cells (STCs) interior mass transport in both hemispheres increased rapidly around the late 1990s. It is proposed that the strengthened STC interior transports provide a pathway for the enhanced influence of off-equatorial thermocline variations on the development of ENSO events after 1999.


2020 ◽  
pp. 1-61
Author(s):  
Hanjie Fan ◽  
Bohua Huang ◽  
Song Yang ◽  
Wenjie Dong

AbstractThis study investigates the mechanisms behind the Pacific Meridional Mode (PMM) in influencing the development of El Niño-Southern Oscillation (ENSO) event and its seasonal predictability. To examine the relative importance of various factors that may modulate the efficiency of the PMM influence, a series of experiments are conducted for selected ENSO events with different intensity using the Community Earth System Model, in which ensemble predictions are made from slightly different ocean initial states but under a common prescribed PMM surface heat flux forcing. Overall, the matched PMM forcing to ENSO, i.e., a positive (negative) PMM prior to an El Niño (a La Niña), plays an enhancing role, while a mismatched PMM forcing plays a damping role. For the matched cases, a positive PMM event enhances an El Niño more strongly than a negative PMM event enhances a La Niña. This asymmetry in influencing ENSO largely originates from the asymmetry in intensity between the positive and negative PMM events in the tropics, which can be explained by the nonlinearity in the growth and equatorward propagation of the PMM-related anomalies of sea surface temperature (SST) and surface zonal wind through both wind-evaporation-SST feedback and summer deep convection response. Our model results also indicate that the PMM acts as a modulator rather than a trigger for the occurrence of ENSO event. Furthermore, the response of ENSO to an imposed PMM forcing is modulated by the preconditioning of the upper-ocean heat content, which provides the memory for the coupled low-frequency evolution in the tropical Pacific.


2019 ◽  
Vol 32 (12) ◽  
pp. 3529-3556 ◽  
Author(s):  
Lijing Cheng ◽  
Kevin E. Trenberth ◽  
John T. Fasullo ◽  
Michael Mayer ◽  
Magdalena Balmaseda ◽  
...  

Abstract As the strongest interannual perturbation to the climate system, El Niño–Southern Oscillation (ENSO) dominates the year-to-year variability of the ocean energy budget. Here we combine ocean observations, reanalyses, and surface flux data with Earth system model simulations to obtain estimates of the different terms affecting the redistribution of energy in the Earth system during ENSO events, including exchanges between ocean and atmosphere and among different ocean basins, and lateral and vertical rearrangements. This comprehensive inventory allows better understanding of the regional and global evolution of ocean heat related to ENSO and provides observational metrics to benchmark performance of climate models. Results confirm that there is a strong negative ocean heat content tendency (OHCT) in the tropical Pacific Ocean during El Niño, mainly through enhanced air–sea heat fluxes Q into the atmosphere driven by high sea surface temperatures. In addition to this diabatic component, there is an adiabatic redistribution of heat both laterally and vertically (0–100 and 100–300 m) in the tropical Pacific and Indian oceans that dominates the local OHCT. Heat is also transported and discharged from 20°S–5°N into off-equatorial regions within 5°–20°N during and after El Niño. OHCT and Q changes outside the tropical Pacific Ocean indicate the ENSO-driven atmospheric teleconnections and changes of ocean heat transport (i.e., Indonesian Throughflow). The tropical Atlantic and Indian Oceans warm during El Niño, partly offsetting the tropical Pacific cooling for the tropical oceans as a whole. While there are distinct regional OHCT changes, many compensate each other, resulting in a weak but robust net global ocean cooling during and after El Niño.


2021 ◽  
Author(s):  
Michael Mayer ◽  
Magdalena Alonso Balmaseda

AbstractThis study investigates the influence of the anomalously warm Indian Ocean state on the unprecedentedly weak Indonesian Throughflow (ITF) and the unexpected evolution of El Niño-Southern Oscillation (ENSO) during 2014–2016. It uses 25-month-long coupled twin forecast experiments with modified Indian Ocean initial conditions sampling observed decadal variations. An unperturbed experiment initialized in Feb 2014 forecasts moderately warm ENSO conditions in year 1 and year 2 and an anomalously weak ITF throughout, which acts to keep tropical Pacific ocean heat content (OHC) anomalously high. Changing only the Indian Ocean to cooler 1997 conditions substantially alters the 2-year forecast of Tropical Pacific conditions. Differences include (i) increased probability of strong El Niño in 2014 and La Niña in 2015, (ii) significantly increased ITF transports and (iii), as a consequence, stronger Pacific ocean heat divergence and thus a reduction of Pacific OHC over the two years. The Indian Ocean’s impact in year 1 is via the atmospheric bridge arising from altered Indian Ocean Dipole conditions. Effects of altered ITF and associated ocean heat divergence (oceanic tunnel) become apparent by year 2, including modified ENSO probabilities and Tropical Pacific OHC. A mirrored twin experiment starting from unperturbed 1997 conditions and several sensitivity experiments corroborate these findings. This work demonstrates the importance of the Indian Ocean’s decadal variations on ENSO and highlights the previously underappreciated role of the oceanic tunnel. Results also indicate that, given the physical links between year-to-year ENSO variations, 2-year-long forecasts can provide additional guidance for interpretation of forecasted year-1 ENSO probabilities.


2013 ◽  
Vol 26 (13) ◽  
pp. 4710-4724 ◽  
Author(s):  
Michael Mayer ◽  
Kevin E. Trenberth ◽  
Leopold Haimberger ◽  
John T. Fasullo

Abstract The variability of zonally resolved tropical energy budgets in association with El Niño–Southern Oscillation (ENSO) is investigated. The most recent global atmospheric reanalyses from 1979 to 2011 are employed with removal of apparent discontinuities to obtain best possible temporal homogeneity. The growing length of record allows a more robust analysis of characteristic patterns of variability with cross-correlation, composite, and EOF methods. A quadrupole anomaly pattern is found in the vertically integrated energy divergence associated with ENSO, with centers over the Indian Ocean, the Indo-Pacific warm pool, the eastern equatorial Pacific, and the Atlantic. The smooth transition, particularly of the main maxima of latent and dry static energy divergence, from the western to the eastern Pacific is found to require at least two EOFs to be adequately described. The canonical El Niño pattern (EOF-1) and a transition pattern (EOF-2; referred to as El Niño Modoki by some authors) form remarkably coherent ENSO-related anomaly structures of the tropical energy budget not only over the Pacific but throughout the tropics. As latent and dry static energy divergences show strong mutual cancellation, variability of total energy divergence is smaller and more tightly coupled to local sea surface temperature (SST) anomalies and is mainly related to the ocean heat discharge and recharge during ENSO peak phases. The complexity of the structures throughout the tropics and their evolution during ENSO events along with their interactions with the annual cycle have often not been adequately accounted for; in particular, the El Niño Modoki mode is but part of the overall evolutionary patterns.


Sign in / Sign up

Export Citation Format

Share Document