scholarly journals Modulation of the Meridional Structures of the Indo-Pacific Warm Pool on the Response of the Hadley Circulation to Tropical SST

2018 ◽  
Vol 31 (21) ◽  
pp. 8971-8984 ◽  
Author(s):  
Juan Feng ◽  
Jianping Li ◽  
Fred Kucharski ◽  
Yaqi Wang ◽  
Cheng Sun ◽  
...  

By decomposing the variations of the Hadley circulation (HC) and tropical zonal-mean sea surface temperature (SST) into the equatorially asymmetric (HEA for HC, SEA for SST) and symmetric (HES for HC, SES for SST) components, the varying response of the HC to different SST meridional structures under warm and cold conditions of the Indo-Pacific warm pool (IPWP) is investigated over the period 1979–2016. The response of the HC to SST evidences an asymmetric variation between warm and cold IPWP conditions; that is, the response ratio of HEA to SEA relative to that of HES to SES is ~5 under warm conditions and ~2 under cold conditions. This asymmetry is primarily due to a decrease in the HEA-to-SEA ratio under cold IPWP conditions, and is driven by changes in the meridional distribution of SST anomalies. Equatorial asymmetric (symmetric) SST anomalies are dominated by warm (cold) IPWP conditions. Thus, variations of SEA are suppressed under cold IPWP conditions, contributing to the observed weakening of the HEA-to-SEA ratio. The results presented here indicate that the HC is more sensitive to the underlying SST when the IPWP is warmer, during which the variation of SEA is enhanced, suggesting a recent strengthening of the response of the HC to SST, as the IPWP has warmed over the past several decades, and highlighting the importance of the IPWP meridional structures rather than the overall warming of the HC.

2020 ◽  
Author(s):  
Niklas Meinicke ◽  
Maria Reimi ◽  
Christina Ravelo ◽  
Nele Meckler

<p>The Western Pacific Warm Pool (WPWP) as a major source of heat and water vapor has a crucial influence on climate dynamics both in the tropics and globally. Yet, there is conflicting proxy evidence regarding the evolution of WPWP temperatures since the Miocene. On the one hand TEX<sub>86</sub> data suggest a gradual cooling by ~2℃ (O’Brian et al., 2014, Zhang et al., 2014) from the Pliocene to today, while faunal (planktonic foraminifera) sea surface temperature estimates (Dowsett, 2007) and Mg/Ca data measured in planktonic foraminifera (Wara et al., 2005) on the other hand indicate the absence of any long-term temperature trends. It has been suggested that Mg/Ca temperatures could on these time scales be biased by long-term changes of the Mg/Ca ratio of seawater (Evans et al., 2016). To test the influence of the proposed seawater changes on Mg/Ca we combined data from two independent temperature proxies, Mg/Ca and clumped isotopes, measured on two species of planktonic foraminifera from IODP Site U1488 in the central WPWP. Our study finds good agreement between both proxies thereby verifying the validity of Mg/Ca records from the WPWP and confirming the absence of a Plio-Pleistocene cooling trend for the WPWP. This finding suggests that the persistent disagreement between foraminifer-based proxies such as Mg/Ca and biomarker data might be caused by different environmental parameters being recorded in the two archives.</p><p> </p><p>References:</p><p>O’Brien CL, Foster GL, Martínez-Botí MA, Abell R, Rae JWB, Pancost RD. High sea surface temperatures in tropical warm pools during the Pliocene. Nature Geoscience. 2014;7(8):606-11.</p><p>Zhang YG, Pagani M, Liu Z. A 12-million-year temperature history of the tropical Pacific Ocean. Science. 2014;344(6179):84-7.</p><p>Dowsett H. Faunal re-evaluation of Mid-Pliocene conditions in the western equatorial Pacific. Micropaleontology. 2007;53(6):447-56.</p><p>Wara MW, Ravelo AC, Delaney ML. Permanent El Nino-like conditions during the Pliocene warm period. Science. 2005;309(5735):758-61.</p><p>Evans D, Brierley C, Raymo ME, Erez J, Müller W. Planktic foraminifera shell chemistry response to seawater chemistry: Pliocene–Pleistocene seawater Mg/Ca, temperature and sea level change. Earth and Planetary Science Letters. 2016;438:139-48.</p>


1998 ◽  
Vol 43 (S1) ◽  
pp. 89-89
Author(s):  
G. R. Min ◽  
F. W. Taylor ◽  
J. Recy ◽  
G. S. Burr ◽  
R. L. Edwards ◽  
...  

2020 ◽  
Vol 132 (11-12) ◽  
pp. 2243-2252 ◽  
Author(s):  
Yang Yang ◽  
Liang Zhou ◽  
Alexandre Normandeau ◽  
Jianjun Jia ◽  
Qijun Yin ◽  
...  

Abstract How climate controls tropical cyclone variability has critical implications for modern human society but is not well understood due to the short length of observational records. To probe this knowledge gap, we present a synthesis of intense typhoon activity from the northwestern Pacific over the past 2000 years, which is supported by a new, well-resolved tidal flat sedimentary record from the Jiangsu coast, eastern China. The record reveals nine intervals of typhoon frequency, indicating that the frequency of intense typhoons has varied on multi-centennial scales over the past 2000 years. Our synthesis shows strong evidence for a seesaw pattern of intense typhoon frequency between southeastern China and Japan and Korea. This pattern can be explained by the El Niño and Southern Oscillation–East Asian Monsoon–sea surface temperature hypothesis, which potentially explains the basin-wide typhoon climate in the northwestern Pacific region. A shift in typhoon activity was identified from 550–280 to 280–50 yr B.P. during the Little Ice Age, when typhoon activity changed from active to quiescent or vice versa. Centennial-scale shifts in Intertropical Convergence Zone and Western Pacific Warm Pool sea surface temperature are likely to be the primary forcing mechanisms driving this shift. Results obtained here provide links between typhoon activity and the El Niño and Southern Oscillation, the East Asian Monsoon, and the Western Pacific Warm Pool sea surface temperature, and therefore improve our ability to fully assess intense typhoon activity in future climate warming.


Sign in / Sign up

Export Citation Format

Share Document