Exploring records of typhoon variability in eastern China over the past 2000 years

2020 ◽  
Vol 132 (11-12) ◽  
pp. 2243-2252 ◽  
Author(s):  
Yang Yang ◽  
Liang Zhou ◽  
Alexandre Normandeau ◽  
Jianjun Jia ◽  
Qijun Yin ◽  
...  

Abstract How climate controls tropical cyclone variability has critical implications for modern human society but is not well understood due to the short length of observational records. To probe this knowledge gap, we present a synthesis of intense typhoon activity from the northwestern Pacific over the past 2000 years, which is supported by a new, well-resolved tidal flat sedimentary record from the Jiangsu coast, eastern China. The record reveals nine intervals of typhoon frequency, indicating that the frequency of intense typhoons has varied on multi-centennial scales over the past 2000 years. Our synthesis shows strong evidence for a seesaw pattern of intense typhoon frequency between southeastern China and Japan and Korea. This pattern can be explained by the El Niño and Southern Oscillation–East Asian Monsoon–sea surface temperature hypothesis, which potentially explains the basin-wide typhoon climate in the northwestern Pacific region. A shift in typhoon activity was identified from 550–280 to 280–50 yr B.P. during the Little Ice Age, when typhoon activity changed from active to quiescent or vice versa. Centennial-scale shifts in Intertropical Convergence Zone and Western Pacific Warm Pool sea surface temperature are likely to be the primary forcing mechanisms driving this shift. Results obtained here provide links between typhoon activity and the El Niño and Southern Oscillation, the East Asian Monsoon, and the Western Pacific Warm Pool sea surface temperature, and therefore improve our ability to fully assess intense typhoon activity in future climate warming.

2017 ◽  
Vol 30 (17) ◽  
pp. 7017-7033 ◽  
Author(s):  
Qing Yang ◽  
Zhuguo Ma ◽  
Xingang Fan ◽  
Zong-Liang Yang ◽  
Zhongfeng Xu ◽  
...  

Annual precipitation anomalies over eastern China are characterized by a north–south dipole pattern, referred to as the “southern flooding and northern drought” pattern (SF/ND), fluctuating on decadal time scales. Previous research has suggested possible links with oceanic forcing, but the underlying physical mechanisms by which sea surface temperature (SST) variability impacts the dipole pattern remains unclear. Idealized atmospheric general circulation model experiments conducted by the U.S. CLIVAR Drought Working Group are used to investigate the role of historical SST anomalies associated with Pacific El Niño–Southern Oscillation (ENSO)-like and the Atlantic multidecadal oscillation (AMO) patterns in this dipole pattern. The results show that the Pacific SST pattern plays a dominant role in driving the decadal variability of this dipole pattern and the associated atmospheric circulation anomalies, whereas the Atlantic SST pattern contributes to a much lesser degree. The direct atmospheric response to the Pacific SST pattern is a large-scale cyclonic or anticyclonic circulation anomaly in the lower troposphere occupying the entire northern North Pacific. During the warm phase of the Pacific SST pattern, it is cyclonic with northwesterly wind anomalies over northern China pushing the monsoon front to the south and consequently SF/ND. During the cold phase of the Pacific SST pattern, the circulation anomaly reverses with southeasterly winds over northern China allowing the monsoon front and the associated rainband to migrate northward, resulting in southern drought and northern flooding. The Atlantic SST pattern plays a supplementary role, enhancing the dipole pattern when the Pacific SST and Atlantic SST patterns are in opposite phases and weakening it when the phases are the same.


2018 ◽  
Vol 31 (21) ◽  
pp. 8971-8984 ◽  
Author(s):  
Juan Feng ◽  
Jianping Li ◽  
Fred Kucharski ◽  
Yaqi Wang ◽  
Cheng Sun ◽  
...  

By decomposing the variations of the Hadley circulation (HC) and tropical zonal-mean sea surface temperature (SST) into the equatorially asymmetric (HEA for HC, SEA for SST) and symmetric (HES for HC, SES for SST) components, the varying response of the HC to different SST meridional structures under warm and cold conditions of the Indo-Pacific warm pool (IPWP) is investigated over the period 1979–2016. The response of the HC to SST evidences an asymmetric variation between warm and cold IPWP conditions; that is, the response ratio of HEA to SEA relative to that of HES to SES is ~5 under warm conditions and ~2 under cold conditions. This asymmetry is primarily due to a decrease in the HEA-to-SEA ratio under cold IPWP conditions, and is driven by changes in the meridional distribution of SST anomalies. Equatorial asymmetric (symmetric) SST anomalies are dominated by warm (cold) IPWP conditions. Thus, variations of SEA are suppressed under cold IPWP conditions, contributing to the observed weakening of the HEA-to-SEA ratio. The results presented here indicate that the HC is more sensitive to the underlying SST when the IPWP is warmer, during which the variation of SEA is enhanced, suggesting a recent strengthening of the response of the HC to SST, as the IPWP has warmed over the past several decades, and highlighting the importance of the IPWP meridional structures rather than the overall warming of the HC.


2021 ◽  
Vol 12 (1) ◽  
pp. 121-132
Author(s):  
Kyung-Sook Yun ◽  
Axel Timmermann ◽  
Malte F. Stuecker

Abstract. The El Niño–Southern Oscillation (ENSO) influences the most extensive tropospheric circulation cells on our planet, known as Hadley and Walker circulations. Previous studies have largely focused on the effect of ENSO on the strength of these cells. However, what has remained uncertain is whether interannual sea surface temperature anomalies can also cause synchronized spatial shifts of these circulations. Here, by examining the spatiotemporal relationship between Hadley and Walker cells in observations and climate model experiments, we demonstrate that the seasonally evolving warm-pool sea surface temperature (SST) anomalies in the decay phase of an El Niño event generate a meridionally asymmetric Walker circulation response, which couples the zonal and meridional atmospheric overturning circulations. This process, which can be characterized as a phase-synchronized spatial shift in Walker and Hadley cells, is accompanied by cross-equatorial northwesterly low-level flow that diverges from an area of anomalous drying in the western North Pacific and converges towards a region with anomalous moistening in the southern central Pacific. Our results show that the SST-induced concurrent spatial shifts of the two circulations are climatically relevant as they can further amplify extratropical precipitation variability on interannual timescales.


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 454
Author(s):  
Andrew R. Jakovlev ◽  
Sergei P. Smyshlyaev ◽  
Vener Y. Galin

The influence of sea-surface temperature (SST) on the lower troposphere and lower stratosphere temperature in the tropical, middle, and polar latitudes is studied for 1980–2019 based on the MERRA2, ERA5, and Met Office reanalysis data, and numerical modeling with a chemistry-climate model (CCM) of the lower and middle atmosphere. The variability of SST is analyzed according to Met Office and ERA5 data, while the variability of atmospheric temperature is investigated according to MERRA2 and ERA5 data. Analysis of sea surface temperature trends based on reanalysis data revealed that a significant positive SST trend of about 0.1 degrees per decade is observed over the globe. In the middle latitudes of the Northern Hemisphere, the trend (about 0.2 degrees per decade) is 2 times higher than the global average, and 5 times higher than in the Southern Hemisphere (about 0.04 degrees per decade). At polar latitudes, opposite SST trends are observed in the Arctic (positive) and Antarctic (negative). The impact of the El Niño Southern Oscillation phenomenon on the temperature of the lower and middle atmosphere in the middle and polar latitudes of the Northern and Southern Hemispheres is discussed. To assess the relative influence of SST, CO2, and other greenhouse gases’ variability on the temperature of the lower troposphere and lower stratosphere, numerical calculations with a CCM were performed for several scenarios of accounting for the SST and carbon dioxide variability. The results of numerical experiments with a CCM demonstrated that the influence of SST prevails in the troposphere, while for the stratosphere, an increase in the CO2 content plays the most important role.


2000 ◽  
Vol 203 (15) ◽  
pp. 2311-2322 ◽  
Author(s):  
B. Culik ◽  
J. Hennicke ◽  
T. Martin

We satellite-tracked five Humboldt penguins during the strong 1997/98 El Nino Southern Oscillation (ENSO) from their breeding island Pan de Azucar (26 degrees 09′S, 70 degrees 40′W) in Northern Chile and related their activities at sea to satellite-derived information on sea surface temperature (SST), sea surface temperature anomaly (SSTA), wind direction and speed, chlorophyll a concentrations and statistical data on fishery landings. We found that Humboldt penguins migrated by up to 895 km as marine productivity decreased. The total daily dive duration was highly correlated with SSTA, ranging from 3.1 to 12.5 h when the water was at its warmest (+4 degrees C). Birds travelled between 2 and 116 km every day, travelling further when SSTA was highest. Diving depths (maximum 54 m), however, were not increased with respect to previous years. Two penguins migrated south and, independently of each other, located an area of high chlorophyll a concentration 150 km off the coast. Humboldt penguins seem to use day length, temperature gradients, wind direction and olfaction to adapt to changing environmental conditions and to find suitable feeding grounds. This makes Humboldt penguins biological in situ detectors of highly productive marine areas, with a potential use in the verification of trends detected by remote sensors on board satellites.


2016 ◽  
Vol 42 ◽  
pp. 73-81
Author(s):  
Miguel Tasambay-Salazar ◽  
María José OrtizBeviá ◽  
Antonio RuizdeElvira ◽  
Francisco José Alvarez-García

Abstract. The El Niño-Southern Oscillation (ENSO) phenomenon is the main source of the predictability skill in many regions of the world for seasonal and interannual timescales. Longer lead predictability experiments of Niño3.4 Index using simple statistical linear models have shown an important skill loss at longer lead times when the targeted season is summer or autumn. We develop different versions of the model substituting some its variables with others that contain tropical or extratropical information, produce a number of hindcasts with these models using two different predictions schemes and cross validate them. We have identified different sets of tropical or extratropical predictors, which can provide useful values of potential skill. We try to find out the sources of the predictability by comparing the sea surface temperature (SST) and heat content (HC) anomalous fields produced by the successful predictors for the 1980–2012 period. We observe that where tropical predictors are used the prediction reproduces only the equatorial characteristics of the warming (cooling). However, where extratropical predictors are included, the predictions are able to simulate the absorbed warming in the South Pacific Convergence Zone (SPCZ).


2015 ◽  
Vol 26 (3) ◽  
pp. 331 ◽  
Author(s):  
Hyeonyeong Kwak ◽  
Yang-Ki Cho ◽  
Gwang-Ho Seo ◽  
Yong-Jin Tak ◽  
Hyo-Seok Park ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document