scholarly journals Pacific Influences on the Meridional Temperature Transport of the Indian Ocean

2019 ◽  
Vol 32 (4) ◽  
pp. 1047-1061 ◽  
Author(s):  
Jie Ma ◽  
Ming Feng ◽  
Bernadette M. Sloyan ◽  
Jian Lan

In this study, low-frequency variability of the meridional temperature transport in the Indian Ocean is examined using a mesoscale-eddy-resolving global ocean circulation model for the period 1979–2014. The dominant empirical orthogonal function (EOF) of the meridional temperature transport is found to be highly influenced by Pacific El Niño–Southern Oscillation (ENSO) through both oceanic and atmospheric waveguides, with the southward temperature transport being stronger during La Niña and weaker during El Niño. A dynamical decomposition of the meridional streamfunction and temperature transport shows that the relative importance of different dynamic modes varies with latitude; these modes act together to contribute to the coherent ENSO response. The Ekman mode explains a larger part of low-frequency variability in overturning and temperature transport north of the equator. Between 25° and 3°S, variations associated with vertical shear mode are of greater importance. The external mode has an important contribution between 30° and 25°S where the western boundary currents impinge on topography. South of 25°S, the variability of the external mode contribution has significant negative correlations with the vertical shear mode, suggesting that the large variability of external mode depends on the joint effects of baroclinicity and topography, such that hydrographic sections alone may not be suitable for deducing changes in the meridional temperature transport at these latitudes.

2007 ◽  
Vol 20 (13) ◽  
pp. 2937-2960 ◽  
Author(s):  
Bohua Huang ◽  
J. Shukla

Abstract To understand the mechanisms of the interannual variability in the tropical Indian Ocean, two long-term simulations are conducted using a coupled ocean–atmosphere GCM—one with active air–sea coupling over the global ocean and the other with regional coupling restricted within the Indian Ocean to the north of 30°S while the climatological monthly sea surface temperatures (SSTs) are prescribed in the uncoupled oceans to drive the atmospheric circulation. The major spatial patterns of the observed upper-ocean heat content and SST anomalies can be reproduced realistically by both simulations, suggesting that they are determined by intrinsic coupled processes within the Indian Ocean. In both simulations, the interannual variability in the Indian Ocean is dominated by a tropical mode and a subtropical mode. The tropical mode is characterized by a coupled feedback among thermocline depth, zonal SST gradient, and wind anomalies over the equatorial and southern tropical Indian Ocean, which is strongest in boreal fall and winter. The tropical mode simulated by the global coupled model reproduces the main observational features, including a seasonal connection to the model El Niño–Southern Oscillation (ENSO). The ENSO influence, however, is weaker than that in a set of ensemble simulations described in Part I of this study, where the observed SST anomalies for 1950–98 are prescribed outside the Indian Ocean. Combining with the results from Part I of this study, it is concluded that ENSO can modulate the temporal variability of the tropical mode through atmospheric teleconnection. Its influence depends on the ENSO strength and duration. The stronger and more persistent El Niño events in the observations extend the life span of the anomalous events in the tropical Indian Ocean significantly. In the regional coupled simulation, the tropical mode is still active, but its dominant period is shifted away from that of ENSO. In the absence of ENSO forcing, the tropical mode is mainly stimulated by an anomalous atmospheric direct thermal cell forced by the fluctuations of the northwestern Pacific monsoon. The subtropical mode is characterized by an east–west dipole pattern of the SST anomalies in the southern subtropical Indian Ocean, which is strongest in austral fall. The SST anomalies are initially forced by surface heat flux anomalies caused by the anomalous southeast trade wind in the subtropical ocean during austral summer. The trade wind anomalies are in turn associated with extratropical variations from the southern annular mode. A thermodynamic air–sea feedback strengthens these subtropical anomalies quickly in austral fall and extends their remnants into the tropical ocean in austral winter. In the simulations, this subtropical variability is independent of ENSO.


2010 ◽  
Vol 23 (3) ◽  
pp. 726-742 ◽  
Author(s):  
Jing-Jia Luo ◽  
Ruochao Zhang ◽  
Swadhin K. Behera ◽  
Yukio Masumoto ◽  
Fei-Fei Jin ◽  
...  

Abstract Climate variability in the tropical Indo-Pacific sector has undergone dramatic changes under global ocean warming. Extreme Indian Ocean dipole (IOD) events occurred repeatedly in recent decades with an unprecedented series of three consecutive episodes during 2006–08, causing vast climate and socioeconomic effects worldwide and weakening the historic El Niño–Indian monsoon relationship. Major attention has been paid to the El Niño influence on the Indian Ocean, but how the IOD influences El Niño and its predictability remained an important issue to be understood. On the basis of various forecast experiments activating and suppressing air–sea coupling in the individual tropical ocean basins using a state-of-the-art coupled ocean–atmosphere model with demonstrated predictive capability, the present study shows that the extreme IOD plays a key role in driving the 1994 pseudo–El Niño, in contrast with traditional El Niño theory. The pseudo–El Niño is more frequently observed in recent decades, coincident with a weakened atmospheric Walker circulation in response to anthropogenic forcing. The study’s results suggest that extreme IOD may significantly enhance El Niño and its onset forecast, which has being a long-standing challenge, and El Niño in turn enhances IOD and its long-range predictability. The intrinsic El Niño–IOD interaction found here provides hope for enhanced prediction skill of both of these climate modes, and it sheds new light on the tropical climate variations and their changes under the influence of global warming.


2021 ◽  
Author(s):  
Michael Mayer ◽  
Magdalena Alonso Balmaseda

AbstractThis study investigates the influence of the anomalously warm Indian Ocean state on the unprecedentedly weak Indonesian Throughflow (ITF) and the unexpected evolution of El Niño-Southern Oscillation (ENSO) during 2014–2016. It uses 25-month-long coupled twin forecast experiments with modified Indian Ocean initial conditions sampling observed decadal variations. An unperturbed experiment initialized in Feb 2014 forecasts moderately warm ENSO conditions in year 1 and year 2 and an anomalously weak ITF throughout, which acts to keep tropical Pacific ocean heat content (OHC) anomalously high. Changing only the Indian Ocean to cooler 1997 conditions substantially alters the 2-year forecast of Tropical Pacific conditions. Differences include (i) increased probability of strong El Niño in 2014 and La Niña in 2015, (ii) significantly increased ITF transports and (iii), as a consequence, stronger Pacific ocean heat divergence and thus a reduction of Pacific OHC over the two years. The Indian Ocean’s impact in year 1 is via the atmospheric bridge arising from altered Indian Ocean Dipole conditions. Effects of altered ITF and associated ocean heat divergence (oceanic tunnel) become apparent by year 2, including modified ENSO probabilities and Tropical Pacific OHC. A mirrored twin experiment starting from unperturbed 1997 conditions and several sensitivity experiments corroborate these findings. This work demonstrates the importance of the Indian Ocean’s decadal variations on ENSO and highlights the previously underappreciated role of the oceanic tunnel. Results also indicate that, given the physical links between year-to-year ENSO variations, 2-year-long forecasts can provide additional guidance for interpretation of forecasted year-1 ENSO probabilities.


2008 ◽  
Vol 21 (9) ◽  
pp. 1948-1962 ◽  
Author(s):  
R. Garcia-Herrera ◽  
D. Barriopedro ◽  
E. Hernández ◽  
H. F. Diaz ◽  
R. R. Garcia ◽  
...  

Abstract The authors present a chronology of El Niño (EN) events based on documentary records from northern Peru. The chronology, which covers the period 1550–1900, is constructed mainly from primary sources from the city of Trujillo (Peru), the Archivo General de Indias in Seville (Spain), and the Archivo General de la Nación in Lima (Peru), supplemented by a reassessment of documentary evidence included in previously published literature. The archive in Trujillo has never been systematically evaluated for information related to the occurrence of El Niño–Southern Oscillation (ENSO). Abundant rainfall and river discharge correlate well with EN events in the area around Trujillo, which is very dry during most other years. Thus, rain and flooding descriptors, together with reports of failure of the local fishery, are the main indicators of EN occurrence that the authors have searched for in the documents. A total of 59 EN years are identified in this work. This chronology is compared with the two main previous documentary EN chronologies and with ENSO indicators derived from proxy data other than documentary sources. Overall, the seventeenth century appears to be the least active EN period, while the 1620s, 1720s, 1810s, and 1870s are the most active decades. The results herein reveal long-term fluctuations in warm ENSO activity that compare reasonably well with low-frequency variability deduced from other proxy data.


2009 ◽  
Vol 36 (7) ◽  
pp. n/a-n/a ◽  
Author(s):  
Goro Yamanaka ◽  
Tamaki Yasuda ◽  
Yosuke Fujii ◽  
Satoshi Matsumoto

2005 ◽  
Vol 18 (17) ◽  
pp. 3428-3449 ◽  
Author(s):  
Albert S. Fischer ◽  
Pascal Terray ◽  
Eric Guilyardi ◽  
Silvio Gualdi ◽  
Pascale Delecluse

Abstract The question of whether and how tropical Indian Ocean dipole or zonal mode (IOZM) interannual variability is independent of El Niño–Southern Oscillation (ENSO) variability in the Pacific is addressed in a comparison of twin 200-yr runs of a coupled climate model. The first is a reference simulation, and the second has ENSO-scale variability suppressed with a constraint on the tropical Pacific wind stress. The IOZM can exist in the model without ENSO, and the composite evolution of the main anomalies in the Indian Ocean in the two simulations is virtually identical. Its growth depends on a positive feedback between anomalous equatorial easterly winds, upwelling equatorial and coastal Kelvin waves reducing the thermocline depth and sea surface temperature off the coast of Sumatra, and the atmospheric dynamical response to the subsequently reduced convection. Two IOZM triggers in the boreal spring are found. The first is an anomalous Hadley circulation over the eastern tropical Indian Ocean and Maritime Continent, with an early northward penetration of the Southern Hemisphere southeasterly trades. This situation grows out of cooler sea surface temperatures in the southeastern tropical Indian Ocean left behind by a reinforcement of the late austral summer winds. The second trigger is a consequence of a zonal shift in the center of convection associated with a developing El Niño, a Walker cell anomaly. The first trigger is the only one present in the constrained simulation and is similar to the evolution of anomalies in 1994, when the IOZM occurred in the absence of a Pacific El Niño state. The presence of these two triggers—the first independent of ENSO and the second phase locking the IOZM to El Niño—allows an understanding of both the existence of IOZM events when Pacific conditions are neutral and the significant correlation between the IOZM and El Niño.


2013 ◽  
Vol 10 (10) ◽  
pp. 6677-6698 ◽  
Author(s):  
J. C. Currie ◽  
M. Lengaigne ◽  
J. Vialard ◽  
D. M. Kaplan ◽  
O. Aumont ◽  
...  

Abstract. The Indian Ocean Dipole (IOD) and the El Niño/Southern Oscillation (ENSO) are independent climate modes, which frequently co-occur, driving significant interannual changes within the Indian Ocean. We use a four-decade hindcast from a coupled biophysical ocean general circulation model, to disentangle patterns of chlorophyll anomalies driven by these two climate modes. Comparisons with remotely sensed records show that the simulation competently reproduces the chlorophyll seasonal cycle, as well as open-ocean anomalies during the 1997/1998 ENSO and IOD event. Results suggest that anomalous surface and euphotic-layer chlorophyll blooms in the eastern equatorial Indian Ocean in fall, and southern Bay of Bengal in winter, are primarily related to IOD forcing. A negative influence of IOD on chlorophyll concentrations is shown in a region around the southern tip of India in fall. IOD also depresses depth-integrated chlorophyll in the 5–10° S thermocline ridge region, yet the signal is negligible in surface chlorophyll. The only investigated region where ENSO has a greater influence on chlorophyll than does IOD, is in the Somalia upwelling region, where it causes a decrease in fall and winter chlorophyll by reducing local upwelling winds. Yet unlike most other regions examined, the combined explanatory power of IOD and ENSO in predicting depth-integrated chlorophyll anomalies is relatively low in this region, suggestive that other drivers are important there. We show that the chlorophyll impact of climate indices is frequently asymmetric, with a general tendency for larger positive than negative chlorophyll anomalies. Our results suggest that ENSO and IOD cause significant and predictable regional re-organisation of chlorophyll via their influence on near-surface oceanography. Resolving the details of these effects should improve our understanding, and eventually gain predictability, of interannual changes in Indian Ocean productivity, fisheries, ecosystems and carbon budgets.


2007 ◽  
Vol 20 (13) ◽  
pp. 3164-3189 ◽  
Author(s):  
H. Annamalai ◽  
H. Okajima ◽  
M. Watanabe

Abstract Two atmospheric general circulation models (AGCMs), differing in numerics and physical parameterizations, are employed to test the hypothesis that El Niño–induced sea surface temperature (SST) anomalies in the tropical Indian Ocean impact considerably the Northern Hemisphere extratropical circulation anomalies during boreal winter [January–March +1 (JFM +1)] of El Niño years. The hypothesis grew out of recent findings that ocean dynamics influence SST variations over the southwest Indian Ocean (SWIO), and these in turn impact local precipitation. A set of ensemble simulations with the AGCMs was carried out to assess the combined and individual effects of tropical Pacific and Indian Ocean SST anomalies on the extratropical circulation. To elucidate the dynamics responsible for the teleconnection, solutions were sought from a linear version of one of the AGCMs. Both AGCMs demonstrate that the observed precipitation anomalies over the SWIO are determined by local SST anomalies. Analysis of the circulation response shows that over the Pacific–North American (PNA) region, the 500-hPa height anomalies, forced by Indian Ocean SST anomalies, oppose and destructively interfere with those forced by tropical Pacific SST anomalies. The model results validated with reanalysis data show that compared to the runs where only the tropical Pacific SST anomalies are specified, the root-mean-square error of the height anomalies over the PNA region is significantly reduced in runs in which the SST anomalies in the Indian Ocean are prescribed in addition to those in the tropical Pacific. Among the ensemble members, both precipitation anomalies over the SWIO and the 500-hPa height over the PNA region show high potential predictability. The solutions from the linear model indicate that the Rossby wave packets involved in setting up the teleconnection between the SWIO and the PNA region have a propagation path that is quite different from the classical El Niño–PNA linkage. The results of idealized experiments indicate that the Northern Hemisphere extratropical response to Indian Ocean SST anomalies is significant and the effect of this response needs to be considered in understanding the PNA pattern during El Niño years. The results presented herein suggest that the tropical Indian Ocean plays an active role in climate variability and that accurate observation of SST there is of urgent need.


2007 ◽  
Vol 20 (13) ◽  
pp. 2872-2880 ◽  
Author(s):  
Gary Meyers ◽  
Peter McIntosh ◽  
Lidia Pigot ◽  
Mike Pook

Abstract The Indian Ocean zonal dipole is a mode of variability in sea surface temperature that seriously affects the climate of many nations around the Indian Ocean rim, as well as the global climate system. It has been the subject of increasing research, and sometimes of scientific debate concerning its existence/nonexistence and dependence/independence on/from the El Niño–Southern Oscillation, since it was first clearly identified in Nature in 1999. Much of the debate occurred because people did not agree on what years are the El Niño or La Niña years, not to mention the newly defined years of the positive or negative dipole. A method that identifies when the positive or negative extrema of the El Niño–Southern Oscillation and Indian Ocean dipole occur is proposed, and this method is used to classify each year from 1876 to 1999. The method is statistical in nature, but has a strong basis on the oceanic physical mechanisms that control the variability of the near-equatorial Indo-Pacific basin. Early in the study it was found that some years could not be clearly classified due to strong decadal variation; these years also must be recognized, along with the reason for their ambiguity. The sensitivity of the classification of years is tested by calculating composite maps of the Indo-Pacific sea surface temperature anomaly and the probability of below median Australian rainfall for different categories of the El Niño–Indian Ocean relationship.


Sign in / Sign up

Export Citation Format

Share Document