scholarly journals A Chronology of El Niño Events from Primary Documentary Sources in Northern Peru*

2008 ◽  
Vol 21 (9) ◽  
pp. 1948-1962 ◽  
Author(s):  
R. Garcia-Herrera ◽  
D. Barriopedro ◽  
E. Hernández ◽  
H. F. Diaz ◽  
R. R. Garcia ◽  
...  

Abstract The authors present a chronology of El Niño (EN) events based on documentary records from northern Peru. The chronology, which covers the period 1550–1900, is constructed mainly from primary sources from the city of Trujillo (Peru), the Archivo General de Indias in Seville (Spain), and the Archivo General de la Nación in Lima (Peru), supplemented by a reassessment of documentary evidence included in previously published literature. The archive in Trujillo has never been systematically evaluated for information related to the occurrence of El Niño–Southern Oscillation (ENSO). Abundant rainfall and river discharge correlate well with EN events in the area around Trujillo, which is very dry during most other years. Thus, rain and flooding descriptors, together with reports of failure of the local fishery, are the main indicators of EN occurrence that the authors have searched for in the documents. A total of 59 EN years are identified in this work. This chronology is compared with the two main previous documentary EN chronologies and with ENSO indicators derived from proxy data other than documentary sources. Overall, the seventeenth century appears to be the least active EN period, while the 1620s, 1720s, 1810s, and 1870s are the most active decades. The results herein reveal long-term fluctuations in warm ENSO activity that compare reasonably well with low-frequency variability deduced from other proxy data.

The Holocene ◽  
2019 ◽  
Vol 30 (1) ◽  
pp. 90-105 ◽  
Author(s):  
Robert J Allan ◽  
Joëlle Gergis ◽  
Rosanne D D’Arrigo

Although extended or ‘protracted’ El Niño and La Niña episodes were first suggested nearly 20 years ago, they have not received the attention of other ‘flavours’ of the El Niño–Southern Oscillation (ENSO) or low-frequency ‘ENSO-like’ phenomena. In this study, instrumental variables and palaeoclimatic reconstructions are used to investigate the most recent ‘protracted’ El Niño episode in 2014–2016, and place it into a longer historical context. Although just reaching the threshold for such an episode, the 2014–2016 ‘protracted’ El Niño had very severe societal, agricultural, environmental and ecological impacts, particularly in western Pacific regions like eastern Australia. We show that although ‘protracted’ ENSO episodes of either phase cause similar, near-global modulations of weather and climate as during more ‘classical’ events, impacts associated with ‘protracted’ episodes last longer, with strong influences in eastern Australia. The latter is a response to the dominance of Niño 4 sea surface temperature (SST) and associated atmospheric teleconnection anomalies during ‘protracted’ ENSO episodes. Importantly, while Niño 4 SST anomalies recorded during the austral summer of 2016 were the highest values on record, an analysis of long-term palaeoclimate records indicates that there may have been episodes of greater magnitude and duration than seen in instrumental observations. This suggests that shorter instrumental observations may underestimate the risks of possible future ENSO extremes compared with those observed from multi-century palaeoclimate records. Improved knowledge of ENSO and the potential to forecast ‘protracted’ episodes would be of immense practical benefit to communities affected by the severe impacts of ENSO extremes.


2021 ◽  
pp. 1-38
Author(s):  
Tao Lian ◽  
Dake Chen

AbstractWhile both intrinsic low-frequency atmosphere–ocean interaction and multiplicative burst-like event affect the development of the El Niño–Southern Oscillation (ENSO), the strong nonlinearity in ENSO dynamics has prevented us from separating their relative contributions. Here we propose an online filtering scheme to estimate the role of the westerly wind bursts (WWBs), a type of aperiodic burst-like atmospheric perturbation over the western-central tropical Pacific, in the genesis of the centennial extreme 1997/98 El Niño using the CESM coupled model. This scheme highlights the deterministic part of ENSO dynamics during model integration, and clearly demonstrates that the strong and long-lasting WWB in March 1997 was essential for generating the 1997/98 El Niño. Without this WWB, the intrinsic low-frequency coupling would have only produced a weak warm event in late 1997 similar to the 2014/15 El Niño.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
S. Abhik ◽  
Pandora Hope ◽  
Harry H. Hendon ◽  
Lindsay B. Hutley ◽  
Stephanie Johnson ◽  
...  

AbstractThis study investigates the underlying climate processes behind the largest recorded mangrove dieback event along the Gulf of Carpentaria coast in northern Australia in late 2015. Using satellite-derived fractional canopy cover (FCC), variation of the mangrove canopies during recent decades are studied, including a severe dieback during 2015–2016. The relationship between mangrove FCC and climate conditions is examined with a focus on the possible role of the 2015–2016 El Niño in altering favorable conditions sustaining the mangroves. The mangrove FCC is shown to be coherent with the low-frequency component of sea level height (SLH) variation related to the El Niño Southern Oscillation (ENSO) cycle in the equatorial Pacific. The SLH drop associated with the 2015–2016 El Niño is identified to be the crucial factor leading to the dieback event. A stronger SLH drop occurred during austral autumn and winter, when the SLH anomalies were about 12% stronger than the previous very strong El Niño events. The persistent SLH drop occurred in the dry season of the year when SLH was seasonally at its lowest, so potentially exposed the mangroves to unprecedented hostile conditions. The influence of other key climate factors is also discussed, and a multiple linear regression model is developed to understand the combined role of the important climate variables on the mangrove FCC variation.


2018 ◽  
Vol 31 (19) ◽  
pp. 8081-8099 ◽  
Author(s):  
Antonietta Capotondi ◽  
Prashant D. Sardeshmukh ◽  
Lucrezia Ricciardulli

El Niño–Southern Oscillation (ENSO) is commonly viewed as a low-frequency tropical mode of coupled atmosphere–ocean variability energized by stochastic wind forcing. Despite many studies, however, the nature of this broadband stochastic forcing and the relative roles of its high- and low-frequency components in ENSO development remain unclear. In one view, the high-frequency forcing associated with the subseasonal Madden–Julian oscillation (MJO) and westerly wind events (WWEs) excites oceanic Kelvin waves leading to ENSO. An alternative view emphasizes the role of the low-frequency stochastic wind components in directly forcing the low-frequency ENSO modes. These apparently distinct roles of the wind forcing are clarified here using a recently released high-resolution wind dataset for 1990–2015. A spectral analysis shows that although the high-frequency winds do excite high-frequency Kelvin waves, they are much weaker than their interannual counterparts and are a minor contributor to ENSO development. The analysis also suggests that WWEs should be viewed more as short-correlation events with a flat spectrum at low frequencies that can efficiently excite ENSO modes than as strictly high-frequency events that would be highly inefficient in this regard. Interestingly, the low-frequency power of the rapid wind forcing is found to be higher during El Niño than La Niña events, suggesting a role also for state-dependent (i.e., multiplicative) noise forcing in ENSO dynamics.


1994 ◽  
Vol 6 (4) ◽  
pp. 473-478 ◽  
Author(s):  
C. Guinet ◽  
P. Jouventin ◽  
J-Y. Georges

The population trend over the last decade for subantarctic fur seals (Arctocephalus tropicalis) on Amsterdam and St. Paul islands and on Possession Island (Crozet Archipelago) and Antarctic fur seals (A. gazella) on Possession Island are analysed. At Amsterdam Island, based on pup counts, the subantarctic fur seal population appears to have stabilized after a period of rapid growth. At Possession Island subantarctic fur seal and Antarctic fur seal, with respective annual growth rates of 19.2 and 17.4%, are reaching the maximum growth rate for the genus Arctocephalus. Annual pup censuses at Possession Island since 1978 indicate important variations from year to year with pup production for A. gazella significantly lower the year after an El Niño Southern Oscillation (ENSO) event, but with no such relationship for A. tropicalis. Several other long term demographic studies of seabirds and marine mammals at different breeding locations in the Southern Ocean indicate that the breeding success of several of these predators appears to be widely affected in years which appear to be related to the ENSO events. To clarify this, it is necessary to analyse in more detail the demographic data obtained for the different subantarctic and Antarctic locations where long term monitoring programmes are conducted.


1997 ◽  
Vol 27 (2) ◽  
pp. 217-235 ◽  
Author(s):  
Gary Shaffer ◽  
Oscar Pizarro ◽  
Leif Djurfeldt ◽  
Sergio Salinas ◽  
Jose Rutllant

2017 ◽  
Vol 30 (8) ◽  
pp. 2885-2903 ◽  
Author(s):  
Andrew Hoell ◽  
Mathew Barlow ◽  
Forest Cannon ◽  
Taiyi Xu

While a strong influence on cold season southwest Asia precipitation by Pacific sea surface temperatures (SSTs) has been previously established, the scarcity of southwest Asia precipitation observations prior to 1960 renders the region’s long-term precipitation history largely unknown. Here a large ensemble of atmospheric model simulations forced by observed time-varying boundary conditions for 1901–2012 is used to examine the long-term sensitivity of November–April southwest Asia precipitation to Pacific SSTs. It is first established that the models are able to reproduce the key features of regional variability during the best-observed 1960–2005 period and then the pre-1960 variability is investigated using the model simulations. During the 1960–2005 period, both the mean precipitation and the two leading modes of precipitation variability during November–April are reasonably simulated by the atmospheric models, which include the previously identified relationships with El Niño–Southern Oscillation (ENSO) and the multidecadal warming of Indo-Pacific SSTs. Over the full 1901–2012 period, there are notable variations in precipitation and in the strength of the SST influence. A long-term drying of the region is associated with the Indo-Pacific warming, with a nearly 10% reduction in westernmost southwest Asia precipitation during 1938–2012. The influence of ENSO on southwest Asia precipitation varied in strength throughout the period: strong prior to the 1950s, weak between 1950 and 1980, and strongest after the 1980s. These variations were not antisymmetric between ENSO phases. El Niño was persistently related with anomalously wet conditions throughout 1901–2012, whereas La Niña was not closely linked to precipitation anomalies prior to the 1970s but has been associated with exceptionally dry conditions thereafter.


2006 ◽  
Vol 6 ◽  
pp. 167-171 ◽  
Author(s):  
A. R. M. Drumond ◽  
T. Ambrizzi

Abstract. Previous studies have discussed the interannual variability of a meridional seesaw of dry and wet conditions over South America (SA) associated to the modulation of the South Atlantic Convergence Zone (SACZ). However, they did not explore if the variability inter ENSO (El Niño Southern Oscillation) can be related to the phase changes of this dipole. To answer this question, an observational work was carried out to explore the atmospheric and Sea Surface Temperature (SST) conditions related to the same ENSO signal and to opposite dipole phases. Rotated Empirical Orthogonal Function (REOF) analysis was applied over normalized Chen precipitation seasonal anomalies in order to find the dipole mode in the Austral Summer (December to February). The fourth rotated mode, explaining 6.6% of the total variance, consists of positive loading over the SACZ region and negative loading over northern Argentina. Extreme events were selected and enhanced activity of SACZ during the Summer season (SACZ+) was identified in nine years: five during La Niña events (LN) and two in El Niño episodes (EN). On the other hand, inhibited manifestations of this system (SACZ-) were identified in seven years: four in EN and two during LN. Power spectrum analysis indicated that the interannual variability of the precipitation dipole seems to be related to the low frequency and to the quasi-biennial part of ENSO variability. The ENSO events with the same signal can present opposite phases for the dipole. The results suggest that the displacement of the convection over Indonesia and western Pacific can play an important role to modulate the seesaw pattern.


2012 ◽  
Vol 12 (5) ◽  
pp. 13201-13236 ◽  
Author(s):  
H. E. Rieder ◽  
L. Frossard ◽  
M. Ribatet ◽  
J. Staehelin ◽  
J. A. Maeder ◽  
...  

Abstract. We present the first spatial analysis of "fingerprints" of the El Niño/Southern Oscillation (ENSO) and atmospheric aerosol load after major volcanic eruptions (El Chichón and Mt. Pinatubo) in extreme low and high (termed ELOs and EHOs, respectively) and mean values of total ozone for the northern and southern mid-latitudes (defined as the region between 30° and 60° north and south, respectively). Significant influence on ozone extremes was found for the warm ENSO phase in both hemispheres during spring, especially towards low latitudes, indicating the enhanced ozone transport from the tropics to the extra-tropics. Further, the results confirm findings of recent work on the connection between the ENSO phase and the strength and extent of the southern ozone "collar". For the volcanic eruptions the analysis confirms findings of earlier studies for the northern mid-latitudes and gives new insights for the Southern Hemisphere. The results provide evidence that the negative effect of the eruption of El Chichón might be partly compensated by a strong warm ENSO phase in 1982–83 at southern mid-latitudes. The strong west-east gradient in the coefficient estimates for the Mt. Pinatubo eruption and the analysis of the relationship between the AAO and ENSO phase, the extent and the position of the southern ozone "collar" and the polar vortex structure provide clear evidence for a dynamical "masking" of the volcanic signal at southern mid-latitudes. The paper also analyses the contribution of atmospheric dynamics and chemistry to long-term total ozone changes. Here, quite heterogeneous results have been found on spatial scales. In general the results show that EESC and the 11-yr solar cycle can be identified as major contributors to long-term ozone changes. However, a strong contribution of dynamical features (El Niño/Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), Antarctic Oscillation (AAO), Quasi-Biennial Oscillation (QBO)) to ozone variability and trends is found at a regional level. For the QBO (at 30 and 50 hPa), strong influence on total ozone variability and trends is found over large parts of the northern and southern mid-latitudes, especially towards equatorial latitudes. Strong influence of ENSO is found over the Northern and Southern Pacific, Central Europe and central southern mid-latitudes. For the NAO, strong influence on column ozone is found over Labrador/Greenland, the Eastern United States, the Euro-Atlantic Sector and Central Europe. For the NAO's southern counterpart, the AAO, strong influence on ozone variability and long-term changes is found at lower southern mid-latitudes, including the southern parts of South America and the Antarctic Peninsula, and central southern mid-latitudes.


Sign in / Sign up

Export Citation Format

Share Document