scholarly journals Dynamics and Thermodynamics of the Mean Transpolar Drift and Ice Thickness in the Arctic Ocean

2019 ◽  
Vol 32 (24) ◽  
pp. 8449-8463 ◽  
Author(s):  
Michael A. Spall

Abstract A theory for the mean ice thickness and the Transpolar Drift in the Arctic Ocean is developed. Asymptotic expansions of the ice momentum and thickness equations are used to derive analytic expressions for the leading-order ice thickness and velocity fields subject to wind stress forcing and heat loss to the atmosphere. The theory is most appropriate for the eastern and central Arctic, but not for the region of the Beaufort Gyre subject to anticyclonic wind stress curl. The scale analysis reveals two distinct regimes: a thin ice regime in the eastern Arctic and a thick ice regime in the western Arctic. In the eastern Arctic, the ice drift is controlled by a balance between wind and ocean drag, while the ice thickness is controlled by heat loss to the atmosphere. In contrast, in the western Arctic, the ice thickness is determined by a balance between wind and internal ice stress, while the drift is indirectly controlled by heat loss to the atmosphere. The southward flow toward Fram Strait is forced by the across-wind gradient in ice thickness. The basic predictions for ice thickness, heat loss, ice volume, and ice export from the theory compare well with an idealized, coupled ocean–ice numerical model over a wide range of parameter space. The theory indicates that increasing atmospheric temperatures or wind speed result in a decrease in maximum ice thickness and ice volume. Increasing temperatures also result in a decrease in heat loss to the atmosphere and ice export through Fram Strait, while increasing winds drive increased heat loss and ice export.

2020 ◽  
Author(s):  
H. Jakob Belter ◽  
Thomas Krumpen ◽  
Luisa von Albedyll ◽  
Tatiana A. Alekseeva ◽  
Sergei V. Frolov ◽  
...  

Abstract. Changes in Arctic sea ice thickness are the result of complex interactions of the dynamic and variable ice cover with atmosphere and ocean. Most of the sea ice exits the Arctic Ocean through Fram Strait, which is why long-term measurements of ice thickness at the end of the Transpolar Drift provide insight into the integrated signals of thermodynamic and dynamic influences along the pathways of Arctic sea ice. We present an updated time series of extensive ice thickness surveys carried out at the end of the Transpolar Drift between 2001 and 2020. Overall, we see a more than 20 % thinning of modal ice thickness since 2001. A comparison with first preliminary results from the international Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) shows that the modal summer thickness of the MOSAiC floe and its wider vicinity are consistent with measurements from previous years. By combining this unique time series with the Lagrangian sea ice tracking tool, ICETrack, and a simple thermodynamic sea ice growth model, we link the observed interannual ice thickness variability north of Fram Strait to increased drift speeds along the Transpolar Drift and the consequential variations in sea ice age and number of freezing degree days. We also show that the increased influence of upward-directed ocean heat flux in the eastern marginal ice zones, termed Atlantification, is not only responsible for sea ice thinning in and around the Laptev Sea, but also that the induced thickness anomalies persist beyond the Russian shelves and are potentially still measurable at the end of the Transpolar Drift after more than a year. With a tendency towards an even faster Transpolar Drift, winter sea ice growth will have less time to compensate the impact of Atlantification on sea ice growth in the eastern marginal ice zone, which will increasingly be felt in other parts of the sea ice covered Arctic.


2003 ◽  
Vol 60 (3) ◽  
pp. 243-251 ◽  
Author(s):  
Jochen Knies ◽  
Christoph Vogt

AbstractImproved multiparameter records from the northern Barents Sea margin show two prominent freshwater pulses into the Arctic Ocean during MIS 5 that significantly disturbed the regional oceanic regime and probably affected global climate. Both pulses are associated with major iceberg-rafted debris (IRD) events, revealing intensive iceberg/sea ice melting. The older meltwater pulse occurred near the MIS 5/6 boundary (∼131,000 yr ago); its ∼2000 year duration and high IRD input accompanied by high illite content suggest a collapse of large-scale Saalian Glaciation in the Arctic Ocean. Movement of this meltwater with the Transpolar Drift current into the Fram Strait probably promoted freshening of Nordic Seas surface water, which may have increased sea-ice formation and significantly reduced deep-water formation. A second pulse of freshwater occurred within MIS 5a (∼77,000 yr ago); its high smectite content and relatively short duration is possibly consistent with sudden discharge of Early Weichselian ice-dammed lakes in northern Siberia as suggested by terrestrial glacial geologic data. The influence of this MIS 5a meltwater pulse has been observed at a number of sites along the Transpolar Drift, through Fram Strait, and into the Nordic Seas; it may well have been a trigger for the North Atlantic cooling event C20.


2021 ◽  
Author(s):  
Hiroshi Sumata ◽  
Laura de Steur ◽  
Dmitry Divine ◽  
Olga Pavlova ◽  
Sebastian Gerland

<p><span><span>Fram Strait is the major gateway connecting the Arctic Ocean and the northern North Atlantic Ocean where about 80 to 90% of sea ice outflow from the Arctic Ocean takes place. Long-term observations from the Fram Strait Arctic Outflow Observatory maintained by the Norwegian Polar Institute captured an unprecedented decline<!-- should we somehow add information that this statement is limited to the time since the early 1990s? --><!-- Reply to Sebastian Gerland (2021/01/12, 15:45): "..." I slightly modified the sentence to mention this. --> of sea ice thickness in 2017 – 2018 since comprehensive observations started in the early 1990s. Four Ice Profiling Sonars moored in the East Greenland Current in Fram Strait simultaneously recorded 50 – 70 cm decline of annual mean ice thickness in comparison with preceding years. A backward trajectory analysis revealed that the decline was attributed to an anomalous sea level pressure pattern from 2017 autumn to 2018 summer. Southerly wind associated with a dipole pressure anomaly between Greenland and the Barents Sea prevented southward motion of ice floes north of Fram Strait. Hence ice pack was exposed to warm Atlantic Water in the north of Fram Strait 2 – 3 times longer than the average year, allowing more melt <!-- should also slower freezing or reduced freezing rates mentioned here during winter and spring (in addition to melt in summer and autumn)? --><!-- Reply to Sebastian Gerland (2021/01/12, 15:46): "..." I would like to keep this sentence as it is, since the analysis implies sea ice melt occurred in the vicinity of Fram Strait in winter (probably due to ocean heat flux), though we don’t have direct measurements of 2018 event. This could be an interesting implications of this study, and seeds for further investigation. -->to happen. At the same time, the dipole anomaly was responsible for the slowest observed annual mean ice drift speed in Fram Strait in the last two decades. As a consequence of the record minimum of ice thickness and the slowest drift speed, the sea ice volume transport through the Fram Strait dropped by more than 50% in comparison with the 2010 – 2017 average.</span></span></p>


2021 ◽  
Vol 15 (6) ◽  
pp. 2575-2591
Author(s):  
H. Jakob Belter ◽  
Thomas Krumpen ◽  
Luisa von Albedyll ◽  
Tatiana A. Alekseeva ◽  
Gerit Birnbaum ◽  
...  

Abstract. Changes in Arctic sea ice thickness are the result of complex interactions of the dynamic and variable ice cover with atmosphere and ocean. Most of the sea ice exiting the Arctic Ocean does so through Fram Strait, which is why long-term measurements of ice thickness at the end of the Transpolar Drift provide insight into the integrated signals of thermodynamic and dynamic influences along the pathways of Arctic sea ice. We present an updated summer (July–August) time series of extensive ice thickness surveys carried out at the end of the Transpolar Drift between 2001 and 2020. Overall, we see a more than 20 % thinning of modal ice thickness since 2001. A comparison of this time series with first preliminary results from the international Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) shows that the modal summer thickness of the MOSAiC floe and its wider vicinity are consistent with measurements from previous years at the end of the Transpolar Drift. By combining this unique time series with the Lagrangian sea ice tracking tool, ICETrack, and a simple thermodynamic sea ice growth model, we link the observed interannual ice thickness variability north of Fram Strait to increased drift speeds along the Transpolar Drift and the consequential variations in sea ice age. We also show that the increased influence of upward-directed ocean heat flux in the eastern marginal ice zones, termed Atlantification, is not only responsible for sea ice thinning in and around the Laptev Sea but also that the induced thickness anomalies persist beyond the Russian shelves and are potentially still measurable at the end of the Transpolar Drift after more than a year. With a tendency towards an even faster Transpolar Drift, winter sea ice growth will have less time to compensate for the impact processes, such as Atlantification, have on sea ice thickness in the eastern marginal ice zone, which will increasingly be felt in other parts of the sea-ice-covered Arctic.


2019 ◽  
Vol 13 (12) ◽  
pp. 3209-3224 ◽  
Author(s):  
Chao Min ◽  
Longjiang Mu ◽  
Qinghua Yang ◽  
Robert Ricker ◽  
Qian Shi ◽  
...  

Abstract. Sea ice volume export through the Fram Strait plays an important role in the Arctic freshwater and energy redistribution. The combined model and satellite sea ice thickness (CMST) data set assimilates CryoSat-2 and soil moisture and ocean salinity (SMOS) thickness products together with satellite sea ice concentration. The CMST data set closes the gap of stand-alone satellite-derived sea ice thickness in summer and therefore allows us to estimate sea ice volume export during the melt season. In this study, we first validate the CMST data set using field observations, and then we estimate the continuous seasonal and interannual variations in Arctic sea ice volume flux through the Fram Strait from September 2010 to December 2016. The results show that seasonal and interannual sea ice volume export vary from about -240(±40) to -970(±60) km3 and -1970(±290) to -2490(±280) km3, respectively. The sea ice volume export reaches its maximum in spring and about one-third of the yearly total volume export occurs in the melt season. The minimum monthly sea ice export is −11 km3 in August 2015, and the maximum (−442 km3) appears in March 2011. The seasonal relative frequencies of sea ice thickness and drift suggest that the Fram Strait outlet in summer is dominated by sea ice that is thicker than 2 m with relatively slow seasonal mean drift of about 3 km d−1.


2019 ◽  
Author(s):  
Chao Min ◽  
Longjiang Mu ◽  
Qinghua Yang ◽  
Robert Ricker ◽  
Qian Shi ◽  
...  

Abstract. Sea ice volume export through the Fram Strait plays an important role on the Arctic freshwater and energy redistribution. The combined model and satellite thickness (CMST) data set assimilates CryoSat-2 and Soil Moisture and Ocean Salinity (SMOS) thickness products together with satellite sea ice concentration. The CMST data set closes the gap of stand-alone satellite-derived sea ice thickness in summer and therefore allows us to estimate sea ice volume export during the melt season. In this study, we first validate the CMST data set using field observations, and then estimate the continuous seasonal and interannual variations of Arctic sea ice volume flux through the Fram Strait from September 2010 to December 2016. The results show that seasonal and interannual sea ice volume export vary from −244 (±43) to −973 (±59) km3 and −1974 (±291) to −2491 (±280) km3, respectively. The sea ice volume export reaches its maximum in spring and the mean amount of the melt season ice volume export accounts about one third of the yearly total amount. The minimum monthly sea ice export is −11 km3 in August 2015 and the maximum (−442 km3) appears in March 2011. Seasonal variations of sea ice thickness and drift frequency distributions infer that the thicker ice accompanied with slower ice motion is easier to appear when there is sea ice exporting through the Fram Strait outlet in summer.


2014 ◽  
Vol 8 (2) ◽  
pp. 705-720 ◽  
Author(s):  
M. Zygmuntowska ◽  
P. Rampal ◽  
N. Ivanova ◽  
L. H. Smedsrud

Abstract. Sea ice volume has decreased in the last decades, evoked by changes in sea ice area and thickness. Estimates of sea ice area and thickness rely on a number of geophysical parameters which introduce large uncertainties. To quantify these uncertainties we use freeboard retrievals from ICESat and investigate different assumptions about snow depth, sea ice density and area. We find that uncertainties in ice area are of minor importance for the estimates of sea ice volume during the cold season in the Arctic basin. The choice of mean ice density used when converting sea ice freeboard into thickness mainly influences the resulting mean sea ice thickness, while snow depth on top of the ice is the main driver for the year-to-year variability, particularly in late winter. The absolute uncertainty in the mean sea ice thickness is 0.28 m in February/March and 0.21 m in October/November. The uncertainty in snow depth contributes up to 70% of the total uncertainty and the ice density 30–35%, with higher values in October/November. We find large uncertainties in the total sea ice volume and trend. The mean total sea ice volume is 10 120 ± 1280 km3 in October/November and 13 250 ± 1860 km3 in February/March for the time period 2005–2007. Based on these uncertainties we obtain trends in sea ice volume of −1450 ± 530 km3 a−1 in October/November and −880 ± 260 km3 a−1 in February/March over the ICESat period (2003–2008). Our results indicate that, taking into account the uncertainties, the decline in sea ice volume in the Arctic between the ICESat (2003–2008) and CryoSat-2 (2010–2012) periods may have been less dramatic than reported in previous studies. However, more work and validation is required to quantify these changes and analyse possible unresolved biases in the freeboard retrievals.


Ocean Science ◽  
2013 ◽  
Vol 9 (3) ◽  
pp. 499-519 ◽  
Author(s):  
M. Marnela ◽  
B. Rudels ◽  
M.-N. Houssais ◽  
A. Beszczynska-Möller ◽  
P. B. Eriksson

Abstract. The volume, heat and freshwater transports in the Fram Strait are estimated from geostrophic computations based on summer hydrographic data from 1984, 1997, 2002 and 2004. In these years, in addition to the usually sampled section along 79° N, a section between Greenland and Svalbard was sampled further north. Quasi-closed boxes bounded by the two sections and Greenland and Svalbard can then be formed. Applying conservation constraints on these boxes provides barotropic reference velocities. The net volume flux is southward and varies between 2 and 4 Sv. The recirculation of Atlantic water is about 2 Sv. Heat is lost to the atmosphere and the heat loss from the area between the sections averaged over the four years is about 10 TW. The net heat (temperature) transport is 20 TW northward into the Arctic Ocean, with large interannual differences. The mean net freshwater added between the sections is 40 mSv and the mean freshwater transport southward across 79° N is less than 60 mSv, indicating that most of the liquid freshwater leaving the Arctic Ocean through Fram Strait in summer is derived from sea ice melt in the northern vicinity of the strait. In 1997, 2001 and 2003 meridional sections along 0° longitude were sampled and in 2003 two smaller boxes can be formed, and the recirculation of Atlantic water in the strait is estimated by geostrophic computations and continuity constraints. The recirculation is weaker close to 80° N than close to 78° N, indicating that the recirculation is mainly confined to the south of 80° N. This is supported by the observations in 1997 and 2001, when only the northern part of the meridional section, from 79° N to 80° N, can be computed with the constraints applied. The recirculation is found strongest close to 79° N.


2012 ◽  
Vol 9 (5) ◽  
pp. 3127-3190 ◽  
Author(s):  
M. Marnela ◽  
B. Rudels ◽  
M.-N. Houssais ◽  
A. Beszczynska-Möller ◽  
P. B. Eriksson

Abstract. The volume, heat and freshwater transports in the Fram Strait are estimated from geostrophic computations based on summer hydrographical data from 1984, 1997, 2002 and 2004. In these years, in addition to the usually sampled section along 79° N, a section between Greenland and Svalbard was sampled further north. Quasi-closed boxes bounded by the two sections and Greenland and Svalbard can then be formed and conservation constraints applied on the boxes. The net volume flux is southward and varies between 2 and 4 Sv. The recirculation of Atlantic water is about 2 Sv. Heat is lost to the atmosphere and the heat loss averaged for the four boxes is about 10 TW and the net heat (temperature) transport is 20 TW northward into the Arctic Ocean, with large interannual differences. The mean net freshwater added between the sections is 40 mSv and the mean freshwater transport southward across 79° N is less than 60 mSv, indicating that most of the liquid freshwater leaving the Arctic Ocean through Fram Strait in summer derives from sea ice melt in the northern vicinity of the strait. In 1997, 2001 and 2003 meridional sections along 0° longitude were sampled and in 2003 two smaller boxes can be formed, and the recirculation of Atlantic water in the strait is estimated by geostrophic computations and continuity constraints. The recirculation is weaker close to 80° N than close to 78° N, indicating that the recirculation is mainly confined to south of 80° N. This is supported by the observations in 1997 and 2001, when only the northern part of the meridional section, from 79° N to 80° N, can be computed with the constraints applied. The recirculation is found strongest close to 79° N.


2013 ◽  
Vol 7 (5) ◽  
pp. 5051-5095 ◽  
Author(s):  
M. Zygmuntowska ◽  
P. Rampal ◽  
N. Ivanova ◽  
L. H. Smedsrud

Abstract. Sea ice volume has been found to decrease in the last decades, evoked by changes in sea ice area and thickness. Estimates of sea ice area and thickness rely on a number of geophysical parameters which introduce large uncertainties. To quantify these uncertainties we use freeboard retrievals from ICESat and investigate different assumptions on snow depth, sea ice density and area. We find that uncertainties in ice area are of minor importance for the estimates of sea ice volume during the cold season in the Arctic basin. The choice of mean ice density used when converting sea ice freeboard into thickness mainly influences the resulting mean sea ice thickness, while snow depth on top of the ice is the main driver for the year-to-year variability, particularly in late winter. The absolute uncertainty in the mean sea ice thickness is 0.28 m in February/March and 0.21 m in October/November. The uncertainty in snow depth contributes up to 70% of the total uncertainty and the ice density 30–35%, with higher values in October/November. We find large uncertainties in the total sea ice volume and trend. The mean total sea ice volume is 10 120 ± 1278 km3 in October/November and 13 254 ± 1858 km3 in February/March for the time period 2005–2007. Based on these uncertainties we obtain trends in sea ice volume of −1445 ± 531 km^3 a−1 in October/November and −875 ± 257 km3 a−1 in February/March over the ICESat period (2003–2008). Our results indicate that, taking into account the uncertainties, the decline in sea ice volume in the Arctic between the ICESat (2003–2008) and CryoSat-2 (2010–2012) periods may have been less dramatic than reported in previous studies.


Sign in / Sign up

Export Citation Format

Share Document