scholarly journals On the Emergence of the Atlantic Multidecadal SST Signal: A Key Role of the Mixed Layer Depth Variability Driven by North Atlantic Oscillation

2020 ◽  
Vol 33 (9) ◽  
pp. 3511-3531
Author(s):  
Ayako Yamamoto ◽  
Hiroaki Tatebe ◽  
Masami Nonaka

AbstractDespite its wide-ranging potential impacts, the exact cause of the Atlantic multidecadal oscillation/variability (AMO/AMV) is far from settled. While the emergence of the AMO sea surface temperature (SST) pattern has been conventionally attributed to the ocean heat transport, a recent study showed that the atmospheric stochastic forcing is sufficient. In this study, we resolve this conundrum by partitioning the multidecadal SST tendency into a part caused by surface heat fluxes and another by ocean dynamics, using a preindustrial control simulation of a state-of-the-art coupled climate model. In the model, horizontal ocean heat advection primarily acts to warm the subpolar SST as in previous studies; however, when the vertical component is also considered, the ocean dynamics overall acts to cool the region. Alternatively, the heat flux term is primarily responsible for the subpolar North Atlantic SST warming, although the associated surface heat flux anomalies are upward as observed. Further decomposition of the heat flux term reveals that it is the mixed layer depth (MLD) deepening that makes the ocean less susceptible for cooling, thus leading to relative warming by increasing the ocean heat capacity. This role of the MLD variability in the AMO signature had not been addressed in previous studies. The MLD variability is primarily induced by the anomalous salinity transport by the Gulf Stream modulated by the multidecadal North Atlantic Oscillation, with turbulent fluxes playing a secondary role. Thus, depending on how we interpret the MLD variability, our results support the two previously suggested frameworks, yet slightly modifying the previous notions.

2004 ◽  
Vol 61 (21) ◽  
pp. 2528-2543 ◽  
Author(s):  
Glenn M. Auslander ◽  
Peter R. Bannon

Abstract This study examines the diurnal response of a mixed-layer model of the dryline system to localized anomalies of surface heat flux, topography, mixed-layer depth, and inversion strength. The two-dimensional, mixed-layer model is used to simulate the dynamics of a cool, moist layer east of the dryline capped by an inversion under synoptically quiescent conditions. The modeled domain simulates the sloping topography of the U.S. Great Plains. The importance of this study can be related to dryline bulges that are areas with enhanced convergence that may trigger convection in suitable environmental conditions. All anomalies are represented by a Gaussian function in the horizontal whose amplitude, size, and orientation can be altered. A positive, surface-heat-flux anomaly produces increased mixing that creates a bulge toward the east, while a negative anomaly produces a westward bulge. Anomalies in topography show a similar trend in bulge direction with a peak giving an eastward bulge, and a valley giving a westward bulge. Anomalies in the initial mixed-layer depth yield an eastward bulge in the presence of a minimum and a westward bulge for a maximum. An anomaly in the initial inversion strength results in a westward bulge when the inversion is stronger, and an eastward bulge when the inversion is weak. The bulges observed in this study at 1800 LT ranged from 400 to 600 km along the dryline and from 25 to 80 km across the dryline. When the heating ceases at night, the entrainment and eastward movement of the line stops, and the line surges westward. This westward surge at night has little dependence on the type of anomaly applied. Whether a westward or eastward bulge was present at 1800 LT, the surge travels an equal distance toward the west. However, the inclusion of weak nocturnal friction reduces the westward surge by 100 to 200 km due to mechanical mixing of the very shallow leading edge of the surge. All model runs exhibit peaks in the mixed-layer depth along the dryline at 1800 LT caused by enhanced boundary layer convergence and entrainment of elevated mixed-layer air into the mixed layer. These peaks appear along the section of the dryline that is least parallel to the southerly flow. They vary in amplitude from 4 to 9 km depending on the amplitude of the anomaly. However, the surface-heat-flux anomalies generally result in peaks at the higher end of this interval. It is hypothesized that the formation of these peaks may be the trigger for deep convection along the dryline in the late afternoon.


2019 ◽  
Vol 75 (3) ◽  
pp. 283-297 ◽  
Author(s):  
Shun Ohishi ◽  
Hidenori Aiki ◽  
Tomoki Tozuka ◽  
Meghan F. Cronin

2015 ◽  
Vol 45 (12) ◽  
pp. 2897-2911 ◽  
Author(s):  
Brodie C. Pearson ◽  
Alan L. M. Grant ◽  
Jeff A. Polton ◽  
Stephen E. Belcher

AbstractThis study uses large-eddy simulation to investigate the structure of the ocean surface boundary layer (OSBL) in the presence of Langmuir turbulence and stabilizing surface heat fluxes. The OSBL consists of a weakly stratified layer, despite a surface heat flux, above a stratified thermocline. The weakly stratified (mixed) layer is maintained by a combination of a turbulent heat flux produced by the wave-driven Stokes drift and downgradient turbulent diffusion. The scaling of turbulence statistics, such as dissipation and vertical velocity variance, is only affected by the surface heat flux through changes in the mixed layer depth. Diagnostic models are proposed for the equilibrium boundary layer and mixed layer depths in the presence of surface heating. The models are a function of the initial mixed layer depth before heating is imposed and the Langmuir stability length. In the presence of radiative heating, the models are extended to account for the depth profile of the heating.


2010 ◽  
Vol 23 (8) ◽  
pp. 1994-2009 ◽  
Author(s):  
A. M. Chiodi ◽  
D. E. Harrison

Abstract Globally, the seasonal cycle is the largest single component of observed sea surface temperature (SST) variability, yet it is still not fully understood. Herein, the degree to which the structure of the seasonal cycle of Southern Hemisphere SST can be explained by the present understanding of surface fluxes and upper-ocean physics is examined. It has long been known that the annual range of Southern Hemisphere SST is largest in the midlatitudes, despite the fact that the annual range of net surface heat flux peaks well poleward of the SST peak. The reasons for this discrepancy (“falloff of the annual range of SST”) are determined here through analysis of net surface heat flux estimates, observed SST, and mixed layer depth data, and results from experiments using two different one-dimensional ocean models. Results show that (i) the classical explanations for the structure of the annual range of SST in the Southern Hemisphere are incomplete, (ii) current estimates of surface heat flux and mixed layer depth can be used to accurately reproduce the observed annual range of SST, and (iii) the prognostic mixed layer models used here often fail to adequately reproduce the seasonal cycle at higher latitudes, despite performing remarkably well in other regions. This suggests that more work is necessary to understand the changes of upper-ocean dynamics that occur with latitude.


2021 ◽  
Author(s):  
Sumit Dandapat ◽  
Arun Chakraborty ◽  
Jayanarayanan Kuttippurath ◽  
Chirantan Bhagawati ◽  
Radharani Sen

2020 ◽  
Vol 33 (17) ◽  
pp. 7697-7714
Author(s):  
Baolan Wu ◽  
Xiaopei Lin ◽  
Lisan Yu

AbstractThe decadal to multidecadal mixed layer variability is investigated in a region south of the Kuroshio Extension (130°E–180°, 25°–35°N), an area where the North Pacific subtropical mode water forms, during 1948–2012. By analyzing the mixed layer heat budget with different observational and reanalysis data, here we show that the decadal to multidecadal variability of the mixed layer temperature and mixed layer depth is covaried with the Atlantic multidecadal oscillation (AMO), instead of the Pacific decadal oscillation (PDO). The mixed layer temperature has strong decadal to multidecadal variability, being warm before 1970 and after 1990 (AMO positive phase) and cold during 1970–90 (AMO negative phase), and so does the mixed layer depth. The dominant process for the mixed layer temperature decadal to multidecadal variability is the Ekman advection, which is controlled by the zonal wind changes related to the AMO. The net heat flux into the ocean surface Qnet acts as a damping term and it is mainly from the effect of latent heat flux and partially from sensible heat flux. While the wind as well as mixed layer temperature decadal changes related to the PDO are weak in the western Pacific Ocean. Our finding proposes the possible influence of the AMO on the northwestern Pacific Ocean mixed layer variability, and could be a potential predictor for the decadal to multidecadal climate variability in the western Pacific Ocean.


2008 ◽  
Vol 21 (5) ◽  
pp. 1029-1047 ◽  
Author(s):  
James A. Carton ◽  
Semyon A. Grodsky ◽  
Hailong Liu

Abstract A new monthly uniformly gridded analysis of mixed layer properties based on the World Ocean Atlas 2005 global ocean dataset is used to examine interannual and longer changes in mixed layer properties during the 45-yr period 1960–2004. The analysis reveals substantial variability in the winter–spring depth of the mixed layer in the subtropics and midlatitudes. In the North Pacific an empirical orthogonal function analysis shows a pattern of mixed layer depth variability peaking in the central subtropics. This pattern occurs coincident with intensification of local surface winds and may be responsible for the SST changes associated with the Pacific decadal oscillation. Years with deep winter–spring mixed layers coincide with years in which winter–spring SST is low. In the North Atlantic a pattern of winter–spring mixed layer depth variability occurs that is not so obviously connected to local changes in winds or SST, suggesting that other processes such as advection are more important. Interestingly, at decadal periods the winter–spring mixed layers of both basins show trends, deepening by 10–40 m over the 45-yr period of this analysis. The long-term mixed layer deepening is even stronger (50–100 m) in the North Atlantic subpolar gyre. At tropical latitudes the boreal winter mixed layer varies in phase with the Southern Oscillation index, deepening in the eastern Pacific and shallowing in the western Pacific and eastern Indian Oceans during El Niños. In boreal summer the mixed layer in the Arabian Sea region of the western Indian Ocean varies in response to changes in the strength of the southwest monsoon.


2015 ◽  
Vol 72 (6) ◽  
pp. 2021-2028 ◽  
Author(s):  
John F. Marra ◽  
Tommy D. Dickey ◽  
Albert J. Plueddemann ◽  
Robert A. Weller ◽  
Christopher S. Kinkade ◽  
...  

Abstract We review bio-optical and physical data from three mooring experiments, the Marine Light–Mixed Layers programme in spring 1989 and 1991 in the Iceland Basin (59°N/21°W), and the Forced Upper Ocean Dynamics Experiment in the central Arabian Sea from October 1994 to 1995 (15.5°N/61.5°E). In the Iceland Basin, from mid-April to mid-June in 1989, chlorophyll-a concentrations are sensitive to small changes in stratification, with intermittent increases early in the record. The spring increase occurs after 20 May, coincident with persistent water column stratification. In 1991, the bloom occurs 2 weeks earlier than in 1989, with a background of strong short-term and diurnal variability in mixed layer depth and minimal horizontal advection. In the Arabian Sea, the mixing response to the northeast and southwest monsoons, plus the response to mesoscale eddies, produces four blooms over the annual cycle. The mixed layer depth in the Arabian Sea never exceeds the euphotic zone, allowing interactions between phytoplankton and grazer populations to become important. For all three mooring experiments, change in water column stratification is key in producing phytoplankton blooms.


Sign in / Sign up

Export Citation Format

Share Document