Tropical Pacific Decadal Variability and ENSO Precursor in CMIP5 Models

2021 ◽  
Vol 34 (3) ◽  
pp. 1023-1045
Author(s):  
Yingying Zhao ◽  
Emanuele Di Lorenzo ◽  
Daoxun Sun ◽  
Samantha Stevenson

AbstractObservational analyses suggest that a significant fraction of the tropical Pacific decadal variability (TPDV) (~60%–70%) is energized by the combined action of extratropical precursors of El Niño–Southern Oscillation (ENSO) originating from the North and South Pacific. Specifically, the growth and decay of the basin-scale TPDV pattern (time scale = ~1.5–2 years) is linked to the following sequence: ENSO precursors (extratropics, growth phase) → ENSO (tropics, peak phase) → ENSO successors (extratropics, decay phase) resulting from ENSO teleconnections. This sequence of teleconnections is an important physical basis for Pacific climate predictability. Here we examine the TPDV and its connection to extratropical dynamics in 20 models from phase 5 of the Coupled Model Intercomparison Project (CMIP). We find that most models (~80%) can simulate the observed spatial pattern (R > 0.6) and frequency characteristics of the TPDV. In 12 models, more than 65% of the basinwide Pacific decadal variability (PDV) originates from TPDV, which is comparable with observations (~70%). However, despite reproducing the basic spatial and temporal statistics, models underestimate the influence of the North and South Pacific ENSO precursors to the TPDV, and most of the models’ TPDV originates in the tropics. Only 35%–40% of the models reproduce the observed extratropical ENSO precursor patterns (R > 0.5). Models with a better representation of the ENSO precursors show 1) better basin-scale signatures of TPDV and 2) stronger ENSO teleconnections from/to the tropics that are consistent with observations. These results suggest that better representation of ENSO precursor dynamics in CMIP may lead to improved Pacific decadal variability dynamics and predictability.

2005 ◽  
Vol 35 (12) ◽  
pp. 2467-2486 ◽  
Author(s):  
Boyin Huang ◽  
Vikram M. Mehta ◽  
Niklas Schneider

Abstract In the study of decadal variations of the Pacific Ocean circulations and temperature, the role of anomalous net atmospheric freshwater [evaporation minus precipitation minus river runoff (EmP)] has received scant attention even though ocean salinity anomalies are long lived and can be expected to have more variance at low frequencies than at high frequencies. To explore the magnitude of salinity and temperature anomalies and their generation processes, the authors studied the response of the Pacific Ocean to idealized EmP anomalies in the Tropics and subtropics using an ocean general circulation model developed at the Massachusetts Institute of Technology. Simulations showed that salinity anomalies generated by the anomalous EmP were spread throughout the Pacific basin by mean flow advection. This redistribution of salinity anomalies caused adjustments of basin-scale ocean currents, which further resulted in basin-scale temperature anomalies due to changes in heat advection caused by anomalous currents. In this study, the response of the Pacific Ocean to magnitudes and locations of anomalous EmP was linear. When forced with a positive EmP anomaly in the subtropical North (South) Pacific, a cooling occurred in the western North (South) Pacific, which extended to the tropical and South (North) Pacific, and a warming occurred in the eastern North (South) Pacific. When forced with a negative EmP anomaly in the tropical Pacific, a warming occurred in the tropical Pacific and western North and South Pacific and a cooling occurred in the eastern North Pacific near 30°N and the South Pacific near 30°S. The temperature changes (0.2°C) in the tropical Pacific were associated with changes in the South Equatorial Current. The temperature changes (0.8°C) in the subtropical North and South Pacific were associated with changes in the subtropical gyres. The temperature anomalies propagated from the tropical Pacific to the subtropical North and South Pacific via equatorial divergent Ekman flows and poleward western boundary currents, and they propagated from the subtropical North and South Pacific to the western tropical Pacific via equatorward-propagating coastal Kelvin waves and to the eastern tropical Pacific via eastward-propagating equatorial Kelvin waves. The time scale of temperature response was typically much longer than that of salinity response because of slow adjustment times of ocean circulations. These results imply that the slow response of ocean temperature due to anomalous EmP in the Tropics and subtropics may play an important role in the Pacific decadal variability.


2003 ◽  
Vol 16 (8) ◽  
pp. 1101-1120 ◽  
Author(s):  
L. Wu ◽  
Z. Liu ◽  
R. Gallimore ◽  
R. Jacob ◽  
D. Lee ◽  
...  

2020 ◽  
Author(s):  
Frauke Albrecht ◽  
Oscar Pizarro ◽  
Eduardo Zorita

<p>Observational altimetry data and data of 18 phase 5 of the Coupled Model Intercomparison Project (CMIP5) are investigated to analyze decadal sea level variability for the subtropical South Pacific. The altimetry data covers the period 1993 to 2017. In order to analyze decadal variability yearly means of detrended data are considered. An Empirical Orthogonal Function (EOF) analysis of the Region 20°S to 60°S is performed in to analyze sea level variablility in the subtropics. The tropical region has been omitted in order to avoid the strong El Niño Southern Oscillation (ENSO) signal masking other subtropical variability in the analysis. The first EOF of the altimetry data shows a clear pattern with a North-South dipole explaining 30% of the variance and the corresponding time series shows a decadal periodicity. The decadal variability of this pattern is reproduced by the CMIP5 models. Analyzing model ocean circulation data show consistent decadal variability in the North-South velocity. As a possible forcing zonal (westerly) surface winds are analyzed. Their pattern confirm Ekman transport to the North (South) in the lower (higher) latitudes, leading to a convergence zone and therefore explaining the sea level rise as seen in the EOF pattern, consistently with the Ekman transport a deep compensatory poleward flow is observed.</p>


2008 ◽  
Vol 21 (18) ◽  
pp. 4691-4709 ◽  
Author(s):  
Daniela Matei ◽  
Noel Keenlyside ◽  
Mojib Latif ◽  
Johann Jungclaus

Abstract The relative impact of the subtropical North and South Pacific Oceans on the tropical Pacific climate mean state and variability is estimated using an ocean–atmosphere–sea ice coupled general circulation model. Tailored experiments are performed in which the model is forced by idealized sea surface temperature anomalies (SSTAs) in the subtropics of both hemispheres. The main results of this study suggest that subtropical South Pacific climate variations play a dominant role in tropical Pacific decadal variability and in the decadal modulation of El Niño–Southern Oscillation (ENSO). In response to a 2°C warming in the subtropical South Pacific, the equatorial Pacific SST increases by about 0.6°C, approximately 65% larger than the change in the North Pacific experiment. The subtropics affect equatorial SST mainly through atmosphere–mixed layer interactions in the South Pacific experiments; the response is mostly accomplished within a decade. The “oceanic tunnel” dominates in the North Pacific experiments; the response takes at least 100 yr to be accomplished. Similar sensitivity experiments conducted with the stand-alone atmosphere model showed that both air–sea interactions and ocean dynamics are crucial in shaping the tropical climate response. The statistics of ENSO exhibit significant changes in amplitude and frequency in response to a warming/cooling of the subtropical South Pacific: a 2°C warming (cooling) of subtropical South Pacific SST reduces (increases) the interannual standard deviation by about 30% (20%) and shortens (lengthens) the ENSO period. The simulated changes in the equatorial zonal SST gradient are the main contributor to the modulation of ENSO variability. The simulated intensification (weakening) of the annual cycle in response to an enhanced warming (cooling) in subtropical South Pacific partly explains the shifts in frequency, but may also lead to a weaker (stronger) ENSO. The subtropical North Pacific thermal forcing did not change the statistical properties of ENSO as strongly.


2019 ◽  
Vol 32 (13) ◽  
pp. 4013-4038 ◽  
Author(s):  
Tianyi Sun ◽  
Yuko M. Okumura

Abstract Stochastic variability of internal atmospheric modes, known as teleconnection patterns, drives large-scale patterns of low-frequency SST variability in the extratropics. To investigate how the decadal component of this stochastically driven variability in the South and North Pacific affects the tropical Pacific and contributes to the observed basinwide pattern of decadal variability, a suite of climate model experiments was conducted. In these experiments, the models are forced with constant surface heat flux anomalies associated with the decadal component of the dominant atmospheric modes, particularly the Pacific–South American (PSA) and North Pacific Oscillation (NPO) patterns. Both the PSA and NPO modes induce basinwide SST anomalies in the tropical Pacific and beyond that resemble the observed interdecadal Pacific oscillation. The subtropical SST anomalies forced by the PSA and NPO modes propagate to the equatorial Pacific mainly through the wind–evaporation–SST feedback. This atmospheric bridge is stronger from the South Pacific than the North Pacific due to the northward displacement of the intertropical convergence zone and the associated northward advection of momentum anomalies. The equatorial ocean dynamics is also more strongly influenced by atmospheric circulation changes induced by the PSA mode than the NPO mode. In the PSA experiment, persistent and zonally coherent wind stress curl anomalies over the South Pacific affect the zonal mean depth of the equatorial thermocline and weaken the equatorial SST anomalies resulting from the atmospheric bridge. This oceanic adjustment serves as a delayed negative feedback and may be important for setting the time scales of tropical Pacific decadal variability.


2013 ◽  
Vol 26 (24) ◽  
pp. 9791-9796 ◽  
Author(s):  
Yuko M. Okumura

Abstract Based on the analysis of multicentury–millennium integrations of an atmospheric model coupled to the ocean with varying degrees, it is argued that ENSO-like decadal variability is primarily driven by stochastic atmospheric forcing. In particular, the leading mode of internal atmospheric variability over the South Pacific, which projects onto the Pacific–South American (PSA) pattern, plays an important role in modulating the trade winds and sea surface temperature (SST) in the southeast tropical Pacific. Subsequent ocean–atmosphere interactions organize a basinwide SST anomaly pattern in the tropics, which in turn forces atmospheric Rossby waves into the extratropics, reinforcing the PSA pattern and inducing coherent decadal changes in the North Pacific. In the absence of ocean dynamics, equatorial SST variability is reduced and the North Pacific exhibits decadal variability independent of the tropical–South Pacific. The strong tropical–South Pacific linkage may be attributed to the equatorially asymmetric nature of tropical Pacific climate.


2019 ◽  
Author(s):  
Hamed D. Ibrahim

North and South Atlantic lateral volume exchange is a key component of the Atlantic Meridional Overturning Circulation (AMOC) embedded in Earth’s climate. Northward AMOC heat transport within this exchange mitigates the large heat loss to the atmosphere in the northern North Atlantic. Because of inadequate climate data, observational basin-scale studies of net interbasin exchange between the North and South Atlantic have been limited. Here ten independent climate datasets, five satellite-derived and five analyses, are synthesized to show that North and South Atlantic climatological net lateral volume exchange is partitioned into two seasonal regimes. From late-May to late-November, net lateral volume flux is from the North to the South Atlantic; whereas from late-November to late-May, net lateral volume flux is from the South to the North Atlantic. This climatological characterization offers a framework for assessing seasonal variations in these basins and provides a constraint for climate models that simulate AMOC dynamics.


2017 ◽  
Vol 30 (13) ◽  
pp. 4965-4981 ◽  
Author(s):  
James F. Booth ◽  
Young-Oh Kwon ◽  
Stanley Ko ◽  
R. Justin Small ◽  
Rym Msadek

To improve the understanding of storm tracks and western boundary current (WBC) interactions, surface storm tracks in 12 CMIP5 models are examined against ERA-Interim. All models capture an equatorward displacement toward the WBCs in the locations of the surface storm tracks’ maxima relative to those at 850 hPa. An estimated storm-track metric is developed to analyze the location of the surface storm track. It shows that the equatorward shift is influenced by both the lower-tropospheric instability and the baroclinicity. Basin-scale spatial correlations between models and ERA-Interim for the storm tracks, near-surface stability, SST gradient, and baroclinicity are calculated to test the ability of the GCMs’ match reanalysis. An intermodel comparison of the spatial correlations suggests that differences (relative to ERA-Interim) in the position of the storm track aloft have the strongest influence on differences in the surface storm-track position. However, in the North Atlantic, biases in the surface storm track north of the Gulf Stream are related to biases in the SST. An analysis of the strength of the storm tracks shows that most models generate a weaker storm track at the surface than 850 hPa, consistent with observations, although some outliers are found. A linear relationship exists among the models between storm-track amplitudes at 500 and 850 hPa, but not between 850 hPa and the surface. In total, the work reveals a dual role in forcing the surface storm track from aloft and from the ocean surface in CMIP5 models, with the atmosphere having the larger relative influence.


Sign in / Sign up

Export Citation Format

Share Document