scholarly journals The effect of explicit convection on climate change in the West African monsoon and central West African Sahel rainfall

2021 ◽  
pp. 1-42

Abstract The West African monsoon (WAM) is the dominant feature of West African climate providing the majority of annual rainfall. Projections of future rainfall over the West African Sahel are deeply uncertain with a key reason likely to be moist convection, which is typically parameterized in global climate models. Here, we use a pan-Africa convection permitting simulation (CP4), alongside a parameterized convection simulation (P25), to determine the key processes that underpin the effect of explicit convection on the climate change of the central West African Sahel (8°W-2°E, 12-17°N). In current climate, CP4 affects WAM processes on multiple scales compared to P25. There are differences in the diurnal cycles of rainfall, moisture convergence, and atmospheric humidity. There are upscale impacts: the WAM penetrates farther north, there is greater humidity over the north Sahel and the Saharan heat low regions, the sub-tropical subsidence rate over the Sahara is weaker, and ascent within the tropical rain belt is deeper. Under climate change, the WAM shifts northwards and Hadley circulation weakens in P25 and CP4. The differences between P25 and CP4 persist, however, underpinned by process differences at the diurnal and large-scales. Mean rainfall increases 17.1% in CP4 compared to 6.7% in P25 and there is greater weakening in tropical ascent and sub-tropical subsidence in CP4. These findings show the limitations of parameterized convection and demonstrate the value that explicit convection simulations can provide to climate modellers and climate policy decision makers.

2013 ◽  
Vol 2013 ◽  
pp. 1-32 ◽  
Author(s):  
Sharon E. Nicholson

The West African Sahel is well known for the severe droughts that ravaged the region in the 1970s and 1980s. Meteorological research on the region has flourished during the last decade as a result of several major field experiments. This paper provides an overview of the results that have ensued. A major focus has been on the West African monsoon, a phenomenon that links all of West Africa. The characteristics and revised picture of the West African monsoon are emphasized. Other topics include the interannual variability of rainfall, the atmospheric circulation systems that govern interannual variability, characteristics of precipitation and convection, wave activity, large-scale factors in variability (including sea-surface temperatures), and land-atmosphere relationships. New paradigms for the monsoon and associated ITCZ and for interannual variability have emerged. These emphasize features in the upper atmosphere, as well as the Saharan Heat Low. Feedback mechanisms have also been emphasized, especially the coupling of convection with atmospheric dynamics and with land surface characteristics. New results also include the contrast between the premonsoon and peak monsoon seasons, two preferred modes of interannual variability (a latitudinal displacement of the tropical rainbelt versus changes in its intensity), and the critical importance of the Tropical Easterly Jet.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1754 ◽  
Author(s):  
Zeineddine Nouaceur ◽  
Ovidiu Murarescu

This study concerns the West African Sahel. The Sahelian climate is characterized by a long dry season and a rainy season which starts in June and ends in September–October. This latter season is associated with the process of oceanic moisture transfer to the mainland (the West African Monsoon). This movement is governed by an overall moving of the meteorological equator and its low-pressure corridor (Intertropical Convergence Zone, ITCZ) towards the north, under the effect of the attraction of the Saharan thermal depressions and a greater vigor of the anticyclonic nuclei. This study was conducted on 27 Sahelian climatic stations in three countries (Burkina Faso, Mauritania, and Senegal). The method used to determine the modes of this variability and the trends of rainfall is the chronological graphic method of information processing (MGCTI) of the “Bertin Matrix” and continuous wavelets transform (CWT). Results show a rain resumption observed in the recent years over the Sahelian region and a convincing link with the surface temperature of the Atlantic Ocean.


2020 ◽  
Vol 33 (8) ◽  
pp. 3151-3172 ◽  
Author(s):  
Rory G. J. Fitzpatrick ◽  
Douglas J. Parker ◽  
John H. Marsham ◽  
David P. Rowell ◽  
Francoise M. Guichard ◽  
...  

AbstractExtreme rainfall is expected to increase under climate change, carrying potential socioeconomic risks. However, the magnitude of increase is uncertain. Over recent decades, extreme storms over the West African Sahel have increased in frequency, with increased vertical wind shear shown to be a cause. Drier midlevels, stronger cold pools, and increased storm organization have also been observed. Global models do not capture the potential effects of lower- to midtropospheric wind shear or cold pools on storm organization since they parameterize convection. Here we use the first convection-permitting simulations of African climate change to understand how changes in thermodynamics and storm dynamics affect future extreme Sahelian rainfall. The model, which simulates warming associated with representative concentration pathway 8.5 (RCP8.5) until the end of the twenty-first century, projects a 28% increase of the extreme rain rate of MCSs. The Sahel moisture change on average follows Clausius–Clapeyron scaling, but has regional heterogeneity. Rain rates scale with the product of time-of-storm total column water (TCW) and in-storm vertical velocity. Additionally, prestorm wind shear and convective available potential energy both modulate in-storm vertical velocity. Although wind shear affects cloud-top temperatures within our model, it has no direct correlation with precipitation rates. In our model, projected future increase in TCW is the primary explanation for increased rain rates. Finally, although colder cold pools are modeled in the future climate, we see no significant change in near-surface winds, highlighting avenues for future research on convection-permitting modeling of storm dynamics.


2010 ◽  
Vol 11 (S1) ◽  
pp. 119-125 ◽  
Author(s):  
Keffing Sissoko ◽  
Herman van Keulen ◽  
Jan Verhagen ◽  
Vera Tekken ◽  
Antonella Battaglini

2013 ◽  
Vol 40 (9) ◽  
pp. 1843-1849 ◽  
Author(s):  
John H. Marsham ◽  
Nick S. Dixon ◽  
Luis Garcia-Carreras ◽  
Grenville M. S. Lister ◽  
Douglas J. Parker ◽  
...  

2021 ◽  
Vol 39 ◽  
pp. 103110
Author(s):  
L. Champion ◽  
N. Gestrich ◽  
K. MacDonald ◽  
L. Nieblas-Ramirez ◽  
D.Q. Fuller

Sign in / Sign up

Export Citation Format

Share Document