scholarly journals The West African Sahel: A Review of Recent Studies on the Rainfall Regime and Its Interannual Variability

2013 ◽  
Vol 2013 ◽  
pp. 1-32 ◽  
Author(s):  
Sharon E. Nicholson

The West African Sahel is well known for the severe droughts that ravaged the region in the 1970s and 1980s. Meteorological research on the region has flourished during the last decade as a result of several major field experiments. This paper provides an overview of the results that have ensued. A major focus has been on the West African monsoon, a phenomenon that links all of West Africa. The characteristics and revised picture of the West African monsoon are emphasized. Other topics include the interannual variability of rainfall, the atmospheric circulation systems that govern interannual variability, characteristics of precipitation and convection, wave activity, large-scale factors in variability (including sea-surface temperatures), and land-atmosphere relationships. New paradigms for the monsoon and associated ITCZ and for interannual variability have emerged. These emphasize features in the upper atmosphere, as well as the Saharan Heat Low. Feedback mechanisms have also been emphasized, especially the coupling of convection with atmospheric dynamics and with land surface characteristics. New results also include the contrast between the premonsoon and peak monsoon seasons, two preferred modes of interannual variability (a latitudinal displacement of the tropical rainbelt versus changes in its intensity), and the critical importance of the Tropical Easterly Jet.

2021 ◽  
pp. 1-42

Abstract The West African monsoon (WAM) is the dominant feature of West African climate providing the majority of annual rainfall. Projections of future rainfall over the West African Sahel are deeply uncertain with a key reason likely to be moist convection, which is typically parameterized in global climate models. Here, we use a pan-Africa convection permitting simulation (CP4), alongside a parameterized convection simulation (P25), to determine the key processes that underpin the effect of explicit convection on the climate change of the central West African Sahel (8°W-2°E, 12-17°N). In current climate, CP4 affects WAM processes on multiple scales compared to P25. There are differences in the diurnal cycles of rainfall, moisture convergence, and atmospheric humidity. There are upscale impacts: the WAM penetrates farther north, there is greater humidity over the north Sahel and the Saharan heat low regions, the sub-tropical subsidence rate over the Sahara is weaker, and ascent within the tropical rain belt is deeper. Under climate change, the WAM shifts northwards and Hadley circulation weakens in P25 and CP4. The differences between P25 and CP4 persist, however, underpinned by process differences at the diurnal and large-scales. Mean rainfall increases 17.1% in CP4 compared to 6.7% in P25 and there is greater weakening in tropical ascent and sub-tropical subsidence in CP4. These findings show the limitations of parameterized convection and demonstrate the value that explicit convection simulations can provide to climate modellers and climate policy decision makers.


Author(s):  
Guillaume Chagnaud ◽  
Geremy Panthou ◽  
Theo Vischel ◽  
Thierry Lebel

Abstract The West African Sahel has been facing for more than 30 years an increase in extreme rainfalls with strong socio-economic impacts. This situation challenges decision-makers to define adaptation strategies in a rapidly changing climate. The present study proposes (i) a quantitative characterization of the trends in extreme rainfalls at the regional scale, (ii) the translation of the trends into metrics that can be used by hydrological risk managers, (iii) elements for understanding the link between the climatology of extreme and mean rainfall. Based on a regional non-stationary statistical model applied to in-situ daily rainfall data over the period 1983-2015, we show that the region-wide increasing trend in extreme rainfalls is highly significant. The change in extreme value distribution reflects an increase in both the mean and variability, producing a 5%/decade increase in extreme rainfall intensity whatever the return period. The statistical framework provides operational elements for revising the design methods of hydraulic structures which most often assume a stationary climate. Finally, the study shows that the increase in extreme rainfall is more attributable to an increase in the intensity of storms (80%) than to their occurrence (20%), reflecting a major disruption from the decadal variability of the rainfall regime documented in the region since 1950.


2009 ◽  
Vol 33 (6) ◽  
pp. 869-892 ◽  
Author(s):  
Allison L. Steiner ◽  
Jeremy S. Pal ◽  
Sara A. Rauscher ◽  
Jason L. Bell ◽  
Noah S. Diffenbaugh ◽  
...  

2014 ◽  
Vol 27 (6) ◽  
pp. 2209-2229 ◽  
Author(s):  
Eun-Soon Im ◽  
Rebecca L. Gianotti ◽  
Elfatih A. B. Eltahir

Abstract This paper presents an evaluation of the performance of the Massachusetts Institute of Technology (MIT) regional climate model (MRCM) in simulating the West African monsoon. The MRCM is built on the Regional Climate Model, version 3 (RegCM3), but with several improvements, including coupling of Integrated Biosphere Simulator (IBIS) land surface scheme, a new surface albedo assignment method, new convective cloud and convective rainfall autoconversion schemes, and a modified scheme for simulating boundary layer height and boundary layer clouds. To investigate the impact of these more physically realistic representations when incorporated into MRCM, a series of experiments were carried out implementing two land surface schemes [IBIS with a new albedo assignment, and the Biosphere–Atmosphere Transfer Scheme (BATS)] and two convection schemes (Grell with the Fritsch–Chappell closure, and Emanuel in both the default form and modified with the new convective cloud cover and a rainfall autoconversion scheme). The analysis primarily focuses on comparing the rainfall characteristics, surface energy balance, and large-scale circulations against various observations. This work documents significant sensitivity in simulation of the West African monsoon to the choices of the land surface and convection schemes. Despite several deficiencies, the simulation with the combination of IBIS and the modified Emanuel scheme with the new convective cloud cover and a rainfall autoconversion scheme shows the best performance with respect to the spatial distribution of rainfall and the dynamics of the monsoon. The coupling of IBIS leads to representations of the surface energy balance and partitioning that show better agreement with observations compared to BATS. The IBIS simulations also reasonably reproduce the dynamical structures of the West African monsoon circulation.


Atmosphere ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 191
Author(s):  
Guillaume Chagnaud ◽  
Hubert Gallée ◽  
Thierry Lebel ◽  
Gérémy Panthou ◽  
Théo Vischel

The rainfall regime of West Africa is highly variable over a large range of space and time scales. With rainfall agriculture being predominent in the region, the local population is extremely vulnerable to intraseasonal dry spells and multi-year droughts as well as to intense rainfall over small time steps. Were this variability to increase, it might render the area close from becoming unhabitable. Anticipating any change is thus crucial from both a societal and a scientific perspective. Despite continuous efforts in Global Climate Model (GCM) development, there is still no agreement on the sign of the future rainfall regime change in the region. Regional Climate Models (RCMs) are used for more accurate projections of future changes as well as end-user-oriented impact studies. In this study, the sensitivity of the Modèle Atmosphérique Régional (MAR) to homogeneous perturbations in boundary forcing air temperature and/or SST is assessed with the aim to better understand (i) the thermodynamical imprint of the recent rainfall regime changes and (ii) the impact of errors in driving data on the West African rainfall regime simulated by an RCM. After an evaluation step where the model is proved to satisfactorily simulate the West African Monsoon (WAM), sensitivity experiments display contrasted, sizable and robust responses of the simulated rainfall regime. The rainfall responses to the boundary forcing perturbations compare in magnitude with the intrinsic model bias, giving support for such an analysis. A physical interpretation of the rainfall anomalies provides confidence in the model response consistency and shows the potential of such an experimental protocol for future climate change downscalling over this region.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1754 ◽  
Author(s):  
Zeineddine Nouaceur ◽  
Ovidiu Murarescu

This study concerns the West African Sahel. The Sahelian climate is characterized by a long dry season and a rainy season which starts in June and ends in September–October. This latter season is associated with the process of oceanic moisture transfer to the mainland (the West African Monsoon). This movement is governed by an overall moving of the meteorological equator and its low-pressure corridor (Intertropical Convergence Zone, ITCZ) towards the north, under the effect of the attraction of the Saharan thermal depressions and a greater vigor of the anticyclonic nuclei. This study was conducted on 27 Sahelian climatic stations in three countries (Burkina Faso, Mauritania, and Senegal). The method used to determine the modes of this variability and the trends of rainfall is the chronological graphic method of information processing (MGCTI) of the “Bertin Matrix” and continuous wavelets transform (CWT). Results show a rain resumption observed in the recent years over the Sahelian region and a convincing link with the surface temperature of the Atlantic Ocean.


2014 ◽  
Vol 119 (14) ◽  
pp. 8684-8694 ◽  
Author(s):  
Helen E. Cockerton ◽  
Jonathan A. Holmes ◽  
F. Alayne Street‐Perrott ◽  
Katherine J. Ficken

Sign in / Sign up

Export Citation Format

Share Document