scholarly journals A simple model for interpreting temperature variability and its higher-order changes

2021 ◽  
pp. 1-51
Author(s):  
Talia Tamarin-Brodsky ◽  
Kevin Hodges ◽  
Brian J. Hoskins ◽  
Theodore G. Shepherd

AbstractAtmospheric temperature distributions are often identified with their variance, while the higher-order moments receive less attention. This can be especially misleading for extremes, which are associated with the tails of the Probability Density Functions (PDFs), and thus depend strongly on the higher-order moments. For example, skewness is related to the asymmetry between positive and negative anomalies, while kurtosis is indicative of the ”extremity” of the tails. Here we show that for near-surface atmospheric temperature, an approximate linear relationship exists between kurtosis and skewness squared. We present a simple model describing this relationship, where the total PDF is written as the sum of three Gaussians, representing small deviations from the climatological mean together with the larger amplitude cold and warm temperature anomalies associated with synoptic systems. This model recovers the PDF structure in different regions of the world, as well as its projected response to climate change, giving a simple physical interpretation of the higher-order temperature variability changes. The kurtosis changes are found to be largely predicted by the skewness changes. Building a deeper understanding of what controls the higher-order moments of the temperature variability is crucial for understanding extreme temperature events and how they respond to climate change.

2010 ◽  
Vol 23 (19) ◽  
pp. 5325-5331 ◽  
Author(s):  
Andrea Toreti ◽  
Franz G. Kuglitsch ◽  
Elena Xoplaki ◽  
Jürg Luterbacher ◽  
Heinz Wanner

Abstract Instrumental daily series of temperature are often affected by inhomogeneities. Several methods are available for their correction at monthly and annual scales, whereas few exist for daily data. Here, an improved version of the higher-order moments (HOM) method, the higher-order moments for autocorrelated data (HOMAD), is proposed. HOMAD addresses the main weaknesses of HOM, namely, data autocorrelation and the subjective choice of regression parameters. Simulated series are used for the comparison of both methodologies. The results highlight and reveal that HOMAD outperforms HOM for small samples. Additionally, three daily temperature time series from stations in the eastern Mediterranean are used to show the impact of homogenization procedures on trend estimation and the assessment of extremes. HOMAD provides an improved correction of daily temperature time series and further supports the use of corrected daily temperature time series prior to climate change assessment.


2015 ◽  
Vol 28 (23) ◽  
pp. 9188-9205 ◽  
Author(s):  
Nicholas R. Cavanaugh ◽  
Samuel S. P. Shen

Abstract This paper explores the effects from averaging weather station data onto a grid on the first four statistical moments of daily minimum and maximum surface air temperature (SAT) anomalies over the entire globe. The Global Historical Climatology Network–Daily (GHCND) and the Met Office Hadley Centre GHCND (HadGHCND) datasets from 1950 to 2010 are examined. The GHCND station data exhibit large spatial patterns for each moment and statistically significant moment trends from 1950 to 2010, indicating that SAT probability density functions are non-Gaussian and have undergone characteristic changes in shape due to decadal variability and/or climate change. Comparisons with station data show that gridded averages always underestimate observed variability, particularly in the extremes, and have altered moment trends that are in some cases opposite in sign over large geographic areas. A statistical closure approach based on the quasi-normal approximation is taken to explore SAT’s higher-order moments and point correlation structure. This study focuses specifically on relating variability calculated from station data to that from gridded data through the moment equations for weighted sums of random variables. The higher-order and nonlinear spatial correlations up to the fourth order demonstrate that higher-order moments at grid scale can be determined approximately by functions of station pair correlations that tend to follow the usual Kolmogorov scaling relation. These results can aid in the development of constraints to reduce uncertainties in climate models and have implications for studies of atmospheric variability, extremes, and climate change using gridded observations.


2021 ◽  
Vol 10 (1) ◽  
pp. 45-54
Author(s):  
Mostafa Abdel-Hameed Mohamed ◽  
Mohamed El-Sayed El-Mahdy

Abstract. Climate change raises important issues concerning hydrological engineering. The impact of climate change on important river basins should be investigated rigorously. Extreme temperature variability has a direct impact on the hydrological cycle, especially the evaporation component. In this paper, spatial and temporal patterns of changes in extreme temperatures were investigated using 10 meteorological stations' data for the period 1950–2018 in the Blue Nile Basin. Long-term trends in the Blue Nile Basin annual and monthly temperatures were investigated. The statistical significance of the trend was calculated by applying the Mann–Kendall (MK) test. The analysis of data was performed using the coefficient of variance and anomaly index. The results showed that the annual maximum and minimum temperatures were increasing significantly with a magnitude of 0.037 and 0.025 ∘C per decade respectively in the period from 1950 to 2018. The result of the Mann–Kendall analysis test revealed a marked increase in the mean maximum and minimum temperature trends over time during the study period (the minimum temperature rate is more evident than the maximum). The long-term anomalies of mean annual minimum temperature revealed the interannual variability while the trend after 1977 was higher than the long-term average, which is proof of the warming trend's existence during the last two decades of the 20th century.


2019 ◽  
Vol 1 (34) ◽  
pp. 391-422
Author(s):  
اشواق حسن حميد صالح

Climate change and its impact on water resources is the problem of the times. Therefore, this study is concerned with the subject of climate change and its impact on the water ration of the grape harvest in Diyala Governorate. The study was based on the data of the Khanaqin climate station for the period 1973-2017, (1986-2017) due to lack of data at governorate level. The general trend of the elements of the climate and its effect on the water formula was extracted. The equation of change was extracted for the duration of the study. The statistical analysis was also used between the elements of the climate (actual brightness, normal temperature, micro and maximum degrees Celsius, wind speed m / s, relative humidity% The results of the statistical analysis confirm that the water ration for the study area is based mainly on the X7 evaporation / netting variable, which is affected by a set of independent variables X1 Solar Brightness X4 X5 Extreme Temperature Wind Speed ​​3X Minimal Temperature and Very High Level .


Patterns ◽  
2021 ◽  
Vol 2 (9) ◽  
pp. 100332
Author(s):  
N. Alexia Raharinirina ◽  
Felix Peppert ◽  
Max von Kleist ◽  
Christof Schütte ◽  
Vikram Sunkara

Sign in / Sign up

Export Citation Format

Share Document