Extratropical Atmospheric Response to Equatorial Atlantic Cold Tongue Anomalies

2007 ◽  
Vol 20 (10) ◽  
pp. 2076-2091 ◽  
Author(s):  
Reindert J. Haarsma ◽  
Wilco Hazeleger

Abstract The extratropical atmospheric response to the equatorial cold tongue mode in the Atlantic Ocean has been investigated with the coupled ocean–atmosphere model, Speedy Ocean (SPEEDO). Similar to the observations, the model simulates a lagged covariability between the equatorial cold tongue mode during late boreal summer and the east Atlantic pattern a few months later in early winter. The equatorial cold tongue mode attains its maximum amplitude during late boreal summer. However, only a few months later, when the ITCZ has moved southward, it is able to induce a significant upper-tropospheric divergence that is able to force a Rossby wave response. The lagged covariability is therefore the result of the persistence of the cold tongue anomaly and a favorable tropical atmospheric circulation a few months later. The Rossby wave energy is trapped in the South Asian subtropical jet and propagates circumglobally before it reaches the North Atlantic. Due to the local increase of the Hadley circulation, forced by the cold tongue anomaly, the subtropical jet over the North Atlantic is enhanced. The resulting increase in the vertical shear of the zonal wind increases the baroclinicity over the North Atlantic. This causes the nonlinear growth of the anomalies due to transient eddy feedbacks to be largest over the North Atlantic, resulting in an enhanced response over that region.

2008 ◽  
Vol 21 (3) ◽  
pp. 576-583 ◽  
Author(s):  
David Ferreira ◽  
Claude Frankignoul

Abstract The transient atmospheric response to interactive SST anomalies in the midlatitudes is investigated using a three-layer QG model coupled in perpetual winter conditions to a slab oceanic mixed layer in the North Atlantic. The SST anomalies are diagnosed from a coupled run and prescribed as initial conditions, but are free to evolve. The initial evolution of the atmospheric response is similar to that obtained with a prescribed SST anomaly, starting as a quasi-linear baroclinic and then quickly evolving into a growing equivalent barotropic one. Because of the heat flux damping, the SST anomaly amplitude slowly decreases, albeit with little change in pattern. Correspondingly, the atmospheric response only increases until it reaches a maximum amplitude after about 1–3.5 months, depending on the SST anomaly considered. The response is similar to that at equilibrium in the fixed SST case, but it is 1.5–2 times smaller, and then slowly decays away.


2021 ◽  
Author(s):  
Tamara Collier ◽  
Jamie Kettleborough ◽  
Adam Scaife ◽  
Leon Hermanson ◽  
Philip Davis

<p>It is well known that climate models commonly show biases in the Tropical Atlantic including reduced cold tongue development in the boreal summer. This work investigates whether these biases are present in the Met Office Seasonal Forecast System (GloSea5) at seasonal lead times and the impact they have on teleconnections to the North Atlantic, a key area for forecasting for Northern Europe.</p><p>GloSea5 hindcasts covering the period 1993 – 2016 are analysed for winter and summer start dates and biases are calculated with comparison to ERA Interim for sea surface temperature, near surface winds and upper tropospheric winds, and the Global Precipitation Climatology Project (GPCP) for Rainfall Rate. In contrast to fully developed climate model biases, enhanced cold tongue development is found in the summer months, and a general cold bias occurs in the SST in both winter and summer. This shows that biases in initialised forecasts do not simply asymptote to the climate model error but show more complex behaviour including a change in the sign of the bias. Easterly winds are found to be strengthened throughout and signs of a double Inter Tropical Convergence Zone (ITCZ) are observed in the winter season. The ITCZ in both seasons is shown to be a narrower band of heavier rain in GloSea5 compared to the GPCP.  We investigate how these tropical biases propagate into the North Atlantic and change the forecast biases there.</p>


2014 ◽  
Vol 27 (3) ◽  
pp. 1010-1028 ◽  
Author(s):  
Jeffrey Shaman

Abstract The seasonal upper-tropospheric teleconnection between ENSO and the North Atlantic/European sector is explored through a series of model experiments. A barotropic vorticity equation model is linearized about climatological conditions for each season of the year, and divergence forcing is applied over the equatorial Pacific to mimic El Niño–related convective activity. During boreal fall, winter, and spring, this forcing similarly excites a northeastward-propagating stationary barotropic Rossby wave train that extends across the North Atlantic to the European coast. Strong anomalies develop over the British Isles in the vicinity of the North Atlantic jet exit. Solutions during boreal summer produce no clear wave train; however, evidence exists for a North Atlantic response because of both eastward- and westward-propagating signals. These direct responses over the Atlantic and Europe are qualitatively similar to observed ENSO-associated anomalies during boreal spring and fall, but differ structurally during summer and winter. Further experiments with the vorticity equation model using full Rossby wave source forcing, which included vorticity advection, increase the amplitude of the response over Europe during some seasons; however, structural differences persist. Finally, experiments with the Community Atmosphere Model (CAM), version 4, reveal that the basic northeastward-propagating response is modulated by downstream feedbacks. These changes are most profound during boreal winter and engender an arching wave train pattern that, matching observations, reflects off the jet over North America, propagates southeastward over the North Atlantic, and fails to reach the European coast. Overall, the simulations with CAM correctly depict observed seasonal changes in the magnitude of the ENSO–North Atlantic/European teleconnection by producing a strong fall and winter response but a weaker spring and summer response. The CAM experiments also indicate that the seasonal response is not dependent on antecedent conditions; however, CAM simulations fail to project the upper-tropospheric anomalies appropriately to the lower troposphere.


2008 ◽  
Vol 21 (5) ◽  
pp. 1029-1047 ◽  
Author(s):  
James A. Carton ◽  
Semyon A. Grodsky ◽  
Hailong Liu

Abstract A new monthly uniformly gridded analysis of mixed layer properties based on the World Ocean Atlas 2005 global ocean dataset is used to examine interannual and longer changes in mixed layer properties during the 45-yr period 1960–2004. The analysis reveals substantial variability in the winter–spring depth of the mixed layer in the subtropics and midlatitudes. In the North Pacific an empirical orthogonal function analysis shows a pattern of mixed layer depth variability peaking in the central subtropics. This pattern occurs coincident with intensification of local surface winds and may be responsible for the SST changes associated with the Pacific decadal oscillation. Years with deep winter–spring mixed layers coincide with years in which winter–spring SST is low. In the North Atlantic a pattern of winter–spring mixed layer depth variability occurs that is not so obviously connected to local changes in winds or SST, suggesting that other processes such as advection are more important. Interestingly, at decadal periods the winter–spring mixed layers of both basins show trends, deepening by 10–40 m over the 45-yr period of this analysis. The long-term mixed layer deepening is even stronger (50–100 m) in the North Atlantic subpolar gyre. At tropical latitudes the boreal winter mixed layer varies in phase with the Southern Oscillation index, deepening in the eastern Pacific and shallowing in the western Pacific and eastern Indian Oceans during El Niños. In boreal summer the mixed layer in the Arabian Sea region of the western Indian Ocean varies in response to changes in the strength of the southwest monsoon.


2018 ◽  
Vol 31 (15) ◽  
pp. 5793-5810 ◽  
Author(s):  
Mi-Kyung Sung ◽  
Seon-Hwa Kim ◽  
Baek-Min Kim ◽  
Yong-Sang Choi

This study investigates the origin of the interdecadal variability in the warm Arctic and cold Eurasia (WACE) pattern, which is defined as the second empirical orthogonal function of surface air temperature (SAT) variability over the Eurasian continent in Northern Hemisphere winter, by analyzing the Twentieth Century Reanalysis dataset. While previous studies highlight recent enhancement of the WACE pattern, ascribing it to anthropogenic warming, the authors found that the WACE pattern has experienced a seemingly periodic interdecadal variation over the twentieth century. This long-term variation in the Eurasian SAT is attributable to the altered coupling between the Siberian high (SH) and intraseasonal Rossby wave emanating from the North Atlantic, as the local wave branch interacts with the SH and consequentially enhances the continental temperature perturbation. It is further identified that these atmospheric circulation changes in Eurasia are largely controlled by the decadal amplitude modulation of the climatological stationary waves over the North Atlantic region. The altered decadal mean condition of stationary wave components brings changes in local baroclinicity and storm track activity over the North Atlantic, which jointly change the intraseasonal Rossby wave generation and propagation characteristics as well. With simple stationary wave model experiments, the authors confirm how the altered mean flow condition in the North Atlantic acts as a source for the growth of the Rossby wave that leads to the change in the downstream WACE pattern.


Author(s):  
Zara L. R. Botterell ◽  
Rod Penrose ◽  
Matthew J. Witt ◽  
Brendan J. Godley

AbstractWith over a century of records, we present a detailed analysis of the spatial and temporal occurrence of marine turtle sightings and strandings in the UK and Ireland between 1910 and 2018. Records of hard-shell turtles, including loggerhead turtles (Caretta caretta, N = 240) and Kemp's ridley turtles (Lepidochelys kempii, N = 61), have significantly increased over time. However, in the most recent years there has been a notable decrease in records. The majority of records of hard-shell turtles were juveniles and occurred in the boreal winter months when the waters are coolest in the North-east Atlantic. They generally occurred on the western aspects of the UK and Ireland highlighting a pattern of decreasing records with increasing latitude, supporting previous suggestions that juvenile turtles arrive in these waters via the North Atlantic current systems. Similarly, the majority of the strandings and sightings of leatherback turtles (Dermochelys coriacea, N = 1683) occurred on the western aspects of the UK and the entirety of Ireland's coastline. In contrast to hard-shell turtles, leatherback turtles were most commonly recorded in the boreal summer months with the majority of strandings being adult sized, of which there has been a recent decrease in annual records. The cause of the recent annual decreases in turtle strandings and sightings across all three species is unclear; however, changes to overall population abundance, prey availability, anthropogenic threats and variable reporting effort could all contribute. Our results provide a valuable reference point to assess species range modification due to climate change, identify possible evidence of anthropogenic threats and to assess the future trajectory of marine turtle populations in the North Atlantic.


2012 ◽  
Vol 140 (4) ◽  
pp. 1047-1066 ◽  
Author(s):  
Melinda S. Peng ◽  
Bing Fu ◽  
Tim Li ◽  
Duane E. Stevens

This study investigates the characteristic differences of tropical disturbances that eventually develop into tropical cyclones (TCs) versus those that did not, using global daily analysis fields of the Navy Operational Global Atmospheric Prediction System (NOGAPS) from the years 2003 to 2008. Time filtering is applied to the data to extract tropical waves with different frequencies. Waves with a 3–8-day period represent the synoptic-scale disturbances that are representatives as precursors of TCs, and waves with periods greater than 20 days represent the large-scale background environmental flow. Composites are made for the developing and nondeveloping synoptic-scale disturbances in a Lagrangian frame following the disturbances. Similarities and differences between them are analyzed to understand the dynamics and thermodynamics of TC genesis. Part I of this study focuses on events in the North Atlantic, while Part II focuses on the western North Pacific. A box difference index (BDI), accounting for both the mean and variability of the individual sample, is introduced to subjectively and quantitatively identify controlling parameters measuring the differences between developing and nondeveloping disturbances. Larger amplitude of the BDI implies a greater possibility to differentiate the difference between two groups. Based on their BDI values, the following parameters are identified as the best predictors for cyclogenesis in the North Atlantic, in the order of importance: 1) water vapor content within 925 and 400 hPa, 2) rain rate, 3) sea surface temperature (SST), 4) 700-hPa maximum relative vorticity, 5) 1000–600-hPa vertical shear, 6) translational speed, and 7) vertically averaged horizontal shear. This list identifies thermodynamic variables as more important controlling parameters than dynamic variables for TC genesis in the North Atlantic. When the east and west (separated by 40°W) Atlantic are examined separately, the 925–400-hPa water vapor content remains as the most important parameter for both regions. The SST and maximum vorticity at 700 hPa have higher importance in the east Atlantic, while SST becomes less important and the vertically averaged horizontal shear and horizontal divergence become more important in the west Atlantic.


2007 ◽  
Vol 20 (5) ◽  
pp. 856-870 ◽  
Author(s):  
Lixin Wu ◽  
Feng He ◽  
Zhengyu Liu ◽  
Chun Li

Abstract In this paper, the atmospheric teleconnections of the tropical Atlantic SST variability are investigated in a series of coupled ocean–atmosphere modeling experiments. It is found that the tropical Atlantic climate not only displays an apparent interhemispheric link, but also significantly influences the North Atlantic Oscillation (NAO) and the El Niño–Southern Oscillation (ENSO). In spring, the tropical Atlantic SST exhibits an interhemispheric seesaw controlled by the wind–evaporation–SST (WES) feedback that subsequently decays through the mediation of the seasonal migration of the ITCZ. Over the North Atlantic, the tropical Atlantic SST can force a significant coupled NAO–dipole SST response in spring that changes to a coupled wave train–horseshoe SST response in the following summer and fall, and a recurrence of the NAO in the next winter. The seasonal changes of the atmospheric response as well as the recurrence of the next winter’s NAO are driven predominantly by the tropical Atlantic SST itself, while the resulting extratropical SST can enhance the atmospheric response, but it is not a necessary bridge of the winter-to-winter NAO persistency. Over the Pacific, the model demonstrates that the north tropical Atlantic (NTA) SST can also organize an interhemispheric SST seesaw in spring in the eastern equatorial Pacific that subsequently evolves into an ENSO-like pattern in the tropical Pacific through mediation of the ITCZ and equatorial coupled ocean–atmosphere feedback.


Sign in / Sign up

Export Citation Format

Share Document