scholarly journals Simulated Seasonal and Interannual Variability of the Mixed Layer Heat Budget in the Northern Indian Ocean*

2007 ◽  
Vol 20 (13) ◽  
pp. 3249-3268 ◽  
Author(s):  
Clémentde Boyer Montégut ◽  
Jérôme Vialard ◽  
S. S. C. Shenoi ◽  
D. Shankar ◽  
Fabien Durand ◽  
...  

Abstract A global ocean general circulation model (OGCM) is used to investigate the mixed layer heat budget of the northern Indian Ocean (NIO). The model is validated against observations and shows fairly good agreement with mixed layer depth data in the NIO. The NIO has been separated into three subbasins: the western Arabian Sea (AS), the eastern AS, and the Bay of Bengal (BoB). This study reveals strong differences between the western and eastern AS heat budget, while the latter basin has similarities with the BoB. Interesting new results on seasonal time scales are shown. The penetration of solar heat flux needs to be taken into account for two reasons. First, an average of 28 W m−2 is lost beneath the mixed layer over the year. Second, the penetration of solar heat flux tends to reduce the effect of solar heat flux on the SST seasonal cycle in the AS because the seasons of strongest flux are also seasons with a thin mixed layer. This enhances the control of SST seasonal variability by latent heat flux. The impact of salinity on SST variability is demonstrated. Salinity stratification plays a clear role in maintaining a high winter SST in the BoB and eastern AS while not in the western AS. The presence of freshwater near the surface allows heat storage below the surface layer that can later be recovered by entrainment warming during winter cooling (with a winter contribution of +2.1°C in the BoB). On an interannual time scale, the eastern AS and BoB are strongly controlled by the winds through the latent heat flux anomalies. In the western AS, vertical processes, as well as horizontal advection, contribute significantly to SST interannual variability, and the wind is not the only factor controlling the heat flux forcing.

2012 ◽  
Vol 25 (7) ◽  
pp. 2306-2328 ◽  
Author(s):  
Kyla Drushka ◽  
Janet Sprintall ◽  
Sarah T. Gille ◽  
Susan Wijffels

Abstract The boreal winter response of the ocean mixed layer to the Madden–Julian oscillation (MJO) in the Indo-Pacific region is determined using in situ observations from the Argo profiling float dataset. Composite averages over numerous events reveal that the MJO forces systematic variations in mixed layer depth and temperature throughout the domain. Strong MJO mixed layer depth anomalies (>15 m peak to peak) are observed in the central Indian Ocean and in the far western Pacific Ocean. The strongest mixed layer temperature variations (>0.6°C peak to peak) are found in the central Indian Ocean and in the region between northwest Australia and Java. A heat budget analysis is used to evaluate which processes are responsible for mixed layer temperature variations at MJO time scales. Though uncertainties in the heat budget are on the same order as the temperature trend, the analysis nonetheless demonstrates that mixed layer temperature variations associated with the canonical MJO are driven largely by anomalous net surface heat flux. Net heat flux is dominated by anomalies in shortwave and latent heat fluxes, the relative importance of which varies between active and suppressed MJO conditions. Additionally, rapid deepening of the mixed layer in the central Indian Ocean during the onset of active MJO conditions induces significant basin-wide entrainment cooling. In the central equatorial Indian Ocean, MJO-induced variations in mixed layer depth can modulate net surface heat flux, and therefore mixed layer temperature variations, by up to ~40%. This highlights the importance of correctly representing intraseasonal mixed layer depth variations in climate models in order to accurately simulate mixed layer temperature, and thus air–sea interaction, associated with the MJO.


2014 ◽  
Vol 43 (11) ◽  
pp. 3179-3199 ◽  
Author(s):  
Rebecca Hummels ◽  
Marcus Dengler ◽  
Peter Brandt ◽  
Michael Schlundt

2019 ◽  
Vol 11 (19) ◽  
pp. 5429 ◽  
Author(s):  
Liang ◽  
Xing ◽  
Wang ◽  
Zeng

The atmospheric and oceanic causes of mixed layer heat variations in the South China Sea (SCS) are examined using data from six long-lived Array for Real-time Geostrophic Oceanography (Argo) floats. The mixed layer heat budget along each float trajectory is evaluated based on direct measurements, satellite and reanalysis datasets. Our results suggest that the mixed layer heat balance in the SCS has distinct spatial and seasonal variations. The amplitude of all terms in the mixed layer heat budget equation is significantly larger in the northern SCS than in the southern SCS, especially in winter. In the northern SCS, the mixed layer heat budget is controlled by the local surface heat flux and horizontal advection terms in winter, and the net heat flux term in summer. In the western and southeastern SCS, the mixed layer heat budget is dominated by the net surface heat flux in both winter and summer. Further analysis shows that in the SCS, surface shortwave radiation and geostrophic heat advection are major contributors to net heat flux and horizontal advection, respectively. Unlike the net heat flux and horizontal advection, the vertical entrainment is a sink term in general. The rate of mixed layer deepening is the most important factor in the entrainment rate, and a barrier layer may decrease the temperature difference between the bottom of the mixed layer and the water beneath. Residual analysis suggests that the residual term in the equation is due to the inexact calculation of heat geostrophic advection, other missing terms, and unresolved physical ocean dynamic processes.


2008 ◽  
Vol 21 (18) ◽  
pp. 4849-4858 ◽  
Author(s):  
Chi-Cherng Hong ◽  
Tim Li ◽  
Jing-Jia Luo

Abstract In this second part of a two-part paper, the mechanism for the amplitude asymmetry of SST anomalies (SSTA) between positive and negative Indian Ocean dipole (IOD) events is investigated through the diagnosis of coupled model simulations. Same as the observed in Part I, a significant negative skewness appears in the IOD east pole (IODE) in September–November (SON), whereas there is no significant skewness in the IOD west pole (IODW). A sensitivity experiment shows that the negative skewness in IODE appears even in the case when the ENSO is absent. The diagnosis of the model mixed layer heat budget reveals that the negative skewness is primarily induced by the nonlinear ocean temperature advection and the asymmetry of the cloud–radiation–SST feedback, consistent with the observation (Part I). However, the simulated latent heat flux anomaly is greatly underestimated in IODE during the IOD developing stage [June–September (JJAS)]. As a result, the net surface heat flux acts as strong thermal damping. The underestimation of the latent heat flux anomaly in the IODE is probably caused by the westward shift of along-coast wind anomalies off Sumatra.


2009 ◽  
Vol 22 (17) ◽  
pp. 4539-4556 ◽  
Author(s):  
Semyon A. Grodsky ◽  
Abderrahim Bentamy ◽  
James A. Carton ◽  
Rachel T. Pinker

Abstract Weekly average satellite-based estimates of latent heat flux (LHTFL) are used to characterize spatial patterns and temporal variability in the intraseasonal band (periods shorter than 3 months). As expected, the major portion of intraseasonal variability of LHTFL is due to winds, but spatial variability of humidity and SST are also important. The strongest intraseasonal variability of LHTFL is observed at the midlatitudes. It weakens toward the equator, reflecting weak variance of intraseasonal winds at low latitudes. It also decreases at high latitudes, reflecting the effect of decreased SST and the related decrease of time-mean humidity difference between heights z = 10 m and z = 0 m. Within the midlatitude belts the intraseasonal variability of LHTFL is locally stronger (up to 50 W m−2) in regions of major SST fronts (like the Gulf Stream and Agulhas). Here it is forced by passing storms and is locally amplified by unstable air over warm SSTs. Although weaker in amplitude (but still significant), intraseasonal variability of LHTFL is observed in the tropical Indian and Pacific Oceans due to wind and humidity perturbations produced by the Madden–Julian oscillations. In this tropical region intraseasonal LHTFL and incoming solar radiation vary out of phase so that evaporation increases just below the convective clusters. Over much of the interior ocean where the surface heat flux dominates the ocean mixed layer heat budget, intraseasonal SST cools in response to anomalously strong upward intraseasonal LHTFL. This response varies geographically, in part because of geographic variations of mixed layer depth and the resulting variations in thermal inertia. In contrast, in the eastern tropical Pacific and Atlantic cold tongue regions intraseasonal SST and LHTFL are positively correlated. This surprising result occurs because in these equatorial upwelling areas SST is controlled by advection rather than by surface fluxes. Here LHTFL responds to rather than drives SST.


2012 ◽  
Vol 40 (3-4) ◽  
pp. 743-759 ◽  
Author(s):  
M. G. Keerthi ◽  
M. Lengaigne ◽  
J. Vialard ◽  
C. de Boyer Montégut ◽  
P. M. Muraleedharan

Author(s):  
B. P. Huynh

Natural-ventilation flow induced in a real-sized rectangular-box room fitted with a solar chimney on its roof is investigated numerically, using a commercial CFD (Computational Fluid Dynamics) software package. The chimney in turn is in the form of a parallel channel with one plate being subjected to uniform solar heat flux. Ventilation rate and air-flow pattern through the room are considered in terms of the heat flux for two different locations of the room’s inlet opening. Chien’s turbulence model of low-Reynolds-number K-ε is used in a Reynolds-Averaged Navier-Stokes (RANS) formulation. It is found that ventilation flow rate increases quickly with solar heat flux when this flux is low, but more gradually at higher flux. At low heat flux, ventilation rate is not significantly affected by location of the inlet opening to the room. On the other hand, at high heat flux, ventilation rate varies substantially with the opening’s location. Location of the inlet opening to the room also affects strongly the air-flow pattern. In any case, ample ventilation rate is readily induced by the chimney.


Sign in / Sign up

Export Citation Format

Share Document