Evaluation of V05 Precipitation Estimates from GPM Constellation Radiometers Using KuPR as the Reference

2020 ◽  
Vol 21 (4) ◽  
pp. 705-728 ◽  
Author(s):  
Yalei You ◽  
Veljko Petkovic ◽  
Jackson Tan ◽  
Rachael Kroodsma ◽  
Wesley Berg ◽  
...  

AbstractThis study assesses the level-2 precipitation estimates from 10 radiometers relative to Global Precipitation Measurement (GPM) Ku-band precipitation radar (KuPR) in two parts. First, nine sensors—four imagers [Advanced Microwave Scanning Radiometer 2 (AMSR2) and three Special Sensor Microwave Imager/Sounders (SSMISs)] and five sounders [Advanced Technology Microwave Sounder (ATMS) and four Microwave Humidity Sounders (MHSs)]—are evaluated over the 65°S–65°N region. Over ocean, imagers outperform sounders, primarily due to the usage of low-frequency channels. Furthermore, AMSR2 is clearly superior to SSMISs, likely due to the finer footprint size. Over land all sensors perform similarly except the noticeably worse performance from ATMS and SSMIS-F17. Second, we include the Sondeur Atmospherique du Profil d’Humidite Intertropicale par Radiometrie (SAPHIR) into the evaluation process, contrasting it against other sensors in the SAPHIR latitudes (30°S–30°N). SAPHIR has a slightly worse detection capability than other sounders over ocean but comparable detection performance to MHSs over land. The intensity estimates from SAPHIR show a larger normalized root-mean-square-error over both land and ocean, likely because only 183.3-GHz channels are available. Currently, imagers are preferred to sounders when level-2 estimates are incorporated into level-3 products. Our results suggest a sensor-specific priority order. Over ocean, this study indicates a priority order of AMSR2, SSMISs, MHSs and ATMS, and SAPHIR. Over land, SSMIS-F17, ATMS and SAPHIR should be given a lower priority than the other sensors.

Author(s):  
Yalei You ◽  
S. Joseph Munchak ◽  
Christa Peters-Lidard ◽  
Sarah Ringerud

AbstractRainfall retrieval algorithms for passive microwave radiometers often exploits the brightness temperature depression due to ice scattering at high frequency channels (≥ 85 GHz) over land. This study presents an alternate method to estimate the daily rainfall amount using the emissivity temporal variation (i.e., Δe) under rain-free conditions at low frequency channels (19, 24 and 37 GHz). Emissivity is derived from 10 passive microwave radiometers, including the Global Precipitation Measurement (GPM) Microwave Imager (GMI), the Advanced Microwave Scanning Radiometer 2 (AMSR2), three Special Sensor Microwave Imager/Sounder (SSMIS), the Advanced Technology Microwave Sounder (ATMS), and four Advanced Microwave Sounding Unit-A (AMSU-A). Four different satellite combination schemes are used to derive the Δe for daily rainfall estimates. They are all-10-satellites, 5-imagers, 6-satellites with very different equator crossing times, and GMI-only. Results show that Δe from all-10-satellites has the best performance with a correlation of 0.60 and RMSE of 6.52 mm, comparing with the integrated multi-satellite retrievals (IMERG) final run product. The 6-satellites scheme has comparable performance with all-10-satellites scheme. The 5-imagers scheme performs noticeably worse with a correlation of 0.49 and RMSE of 7.28 mm, while the GMI-only scheme performs the worst with a correlation of 0.25 and RMSE of 11.36 mm. The inferior performance from the 5-imagers and GMI-only schemes can be explained by the much longer revisit time, which cannot accurately capture the emissivity temporal variation.


2016 ◽  
Vol 33 (12) ◽  
pp. 2699-2716 ◽  
Author(s):  
Minda Le ◽  
V. Chandrasekar ◽  
Sounak Biswas

AbstractThe Dual-Frequency Precipitation Radar (DPR) on board the Global Precipitation Measurement (GPM) Core Observatory has reflectivity measurements at two different frequencies: Ku and Ka bands. The dual-frequency ratio from the measurements has been used to perform rain type classification and microphysics retrieval in the current DPR level 2 algorithm. The dual-frequency classification module is a new module in the GPM level 2 algorithm. The module performs rain type classification and melting region detection using the vertical profile of the dual-frequency ratio. This paper presents an evaluation of the performance of the GPM dual-frequency classification module after launch. The evaluation process includes a comparison between the dual-frequency classification results and the TRMM legacy single-frequency results, as well as validation with ground radars.


Author(s):  
Lisa Milani ◽  
Mark S. Kulie ◽  
Daniele Casella ◽  
Pierre E. Kirstetter ◽  
Giulia Panegrossi ◽  
...  

AbstractThis study focuses on the ability of the Global Precipitation Measurement (GPM) passive microwave sensors to detect and provide quantitative precipitation estimates (QPE) for extreme lake-effect snowfall events over the United States lower Great Lakes region. GPM Microwave Imager (GMI) high frequency channels can clearly detect intense shallow convective snowfall events. However, GMI Goddard PROfiling (GPROF) QPE retrievals produce inconsistent results when compared against the Multi-Radar/Multi-Sensor (MRMS) ground-based radar reference dataset. While GPROF retrievals adequately capture intense snowfall rates and spatial patterns of one event, GPROF systematically underestimates intense snowfall rates in another event. Furthermore, GPROF produces abundant light snowfall rates that do not conform with MRMS observations. Ad-hoc precipitation rate thresholds are suggested to partially mitigate GPROF’s overproduction of light snowfall rates. The sensitivity and retrieval efficiency of GPROF to key parameters (2-meter temperature, total precipitable water, and background surface type) used to constrain the GPROF a-priori retrieval database are investigated. Results demonstrate that typical lake-effect snow environmental and surface conditions, especially coastal surfaces, are underpopulated in the database and adversely affect GPROF retrievals. For the two presented case studies, using snow cover a-priori database in the locations of originally deemed as coastline improves retrieval. This study suggests that it is particularly important to have more accurate GPROF surface classifications and better representativeness of the a-priori databases to improve intense lake-effect snow detection and retrieval performance.


Author(s):  
Yalei You ◽  
Christa Peters-Lidard ◽  
S. Joseph Munchak ◽  
Jackson Tan ◽  
Scott Braun ◽  
...  

AbstractPrevious studies showed that conical scanning radiometers greatly outperform cross-track scanning radiometers for precipitation retrieval over ocean. This study demonstrates a novel approach to improve precipitation rates at the cross-track scanning radiometers’ observation time by propagating the conical scanning radiometers’ retrievals to the cross-track scanning radiometers’ observation time. The improved precipitation rate is a weighted average of original cross-track radiometers’ retrievals and retrievals propagated from a conical scanning radiometer. The cross-track scanning radiometers include the Advanced Technology Microwave Sounder (ATMS) onboard the NPP satellite and four Microwave Humidity Sounders (MHSs). The conical scanning radiometers include the Advanced Microwave Scanning Radiometer 2 (AMSR2) and three Special Sensor Microwave Imager/Sounders (SSMISs), while the precipitation retrievals from the Global Precipitation Measurement (GPM) Microwave Imager (GMI) are taken as the reference. Results show that the morphed precipitation rates agree much better with the reference. The degree of improvement depends on several factors, including the propagated precipitation source, the time interval between the cross-track scanning radiometer and the conical scanning radiometer, the precipitation type (convective vs. stratiform), the precipitation events’ size, and the geolocation. The study has potential to greatly improve high-impact weather systems monitoring (e.g., hurricanes) and multi-satellite precipitation products. It may also enhance the usefulness of future satellite missions with cross-track scanning radiometers onboard.


2013 ◽  
Vol 14 (1) ◽  
pp. 153-170 ◽  
Author(s):  
Yu Zhang ◽  
Dong-Jun Seo ◽  
David Kitzmiller ◽  
Haksu Lee ◽  
Robert J. Kuligowski ◽  
...  

Abstract This paper assesses the accuracy of satellite quantitative precipitation estimates (QPEs) from two versions of the Self-Calibrating Multivariate Precipitation Retrieval (SCaMPR) algorithm relative to that of gridded gauge-only QPEs. The second version of SCaMPR uses the QPEs from Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar and Microwave Imager as predictands whereas the first version does not. The assessments were conducted for 22 catchments in Texas and Louisiana against National Weather Service operational multisensor QPE. Particular attention was given to the density below which SCaMPR QPEs outperform gauge-only QPEs and effects of TRMM ingest. Analyses indicate that SCaMPR QPEs can be competitive in terms of correlation and CSI against sparse gauge networks (with less than one gauge per 3200–12 000 km2) and over 1–3-h scale, but their relative strengths diminish with temporal aggregation. In addition, the major advantage of SCaMPR QPEs is its relatively low false alarm rates, whereas gauge-only QPEs exhibit better skill in detecting rainfall—though the detection skill of SCaMPR QPEs tends to improve at higher rainfall thresholds. Moreover, it was found that ingesting TRMM QPEs help mitigate the positive overall bias in SCaMPR QPEs, and improve the detection of moderate–heavy and particularly wintertime precipitation. Yet, it also tends to elevate the false alarm rate, and its impacts on detection rates can be slightly negative for summertime storms. The implications for adoption of TRMM and Global Precipitation Measurement (GPM) QPEs for NWS operations are discussed.


2016 ◽  
Vol 33 (10) ◽  
pp. 2225-2245 ◽  
Author(s):  
Mircea Grecu ◽  
William S. Olson ◽  
Stephen Joseph Munchak ◽  
Sarah Ringerud ◽  
Liang Liao ◽  
...  

AbstractIn this paper, the operational Global Precipitation Measurement (GPM) mission combined radar–radiometer algorithm is thoroughly described. The operational combined algorithm is designed to reduce uncertainties in GPM Core Observatory precipitation estimates by effectively integrating complementary information from the GPM Dual-Frequency Precipitation Radar (DPR) and the GPM Microwave Imager (GMI) into an optimal, physically consistent precipitation product. Although similar in many respects to previously developed combined algorithms, the GPM combined algorithm has several unique features that are specifically designed to meet the GPM objectives of deriving, based on GPM Core Observatory information, accurate and physically consistent precipitation estimates from multiple spaceborne instruments, and ancillary environmental data from reanalyses. The algorithm features an optimal estimation framework based on a statistical formulation of the Gauss–Newton method, a parameterization for the nonuniform distribution of precipitation within the radar fields of view, a methodology to detect and account for multiple scattering in Ka-band DPR observations, and a statistical deconvolution technique that allows for an efficient sequential incorporation of radiometer information into DPR precipitation retrievals.


2019 ◽  
Vol 20 (9) ◽  
pp. 1907-1923 ◽  
Author(s):  
Abishek Adhikari ◽  
Chuntao Liu ◽  
Lindsey Hayden

Abstract The uncertainties in the version 5 Global Precipitation Measurement (GPM) Microwave Imager (GMI) precipitation retrievals are evaluated via comparison with the radar–radiometer (so-called “Combined”) retrievals between 40°S and 40°N. Results show the precipitation estimates are close (~7% GMI overestimation) globally. However, some specific regions, such as central Africa, the Amazon, the Himalayan region, and the tropical eastern Pacific, show a large overestimation (up to 50%) in GMI retrievals when compared to Combined retrievals. The uncertainties are further evaluated based on precipitation system properties, such as size and intensity of the system. GMI tends to underestimate precipitation volume when the system is relatively warm (>250 K) and small (<200 km2) due to the lack of ice scattering signatures. However, for large systems (>2000 km2), GMI-derived precipitation is typically higher than Combined over all surfaces. Based on the system properties, a simple bias correction methodology is proposed to implement in the Goddard Profiling Algorithm (GPROF) to reduce GMI biases. GMI precipitation volume is adjusted in each precipitation system based on the size and minimum 89 GHz polarization-corrected temperature (PCT) over land and ocean separately. The overall GMI bias is reduced to 3%, with significant improvement over land. The GMI biases (up to 50%) over the previously mentioned regions are significantly or partially removed, becoming less than 20%. This method also shows effectiveness in removing zonal and seasonal biases from GMI estimates. These results suggest the importance of utilizing the information of whole precipitation systems instead of individual pixels in the precipitation retrieval.


2020 ◽  
Vol 12 (24) ◽  
pp. 4154
Author(s):  
Xinxin Sui ◽  
Zhi Li ◽  
Ziqiang Ma ◽  
Jintao Xu ◽  
Siyu Zhu ◽  
...  

The Integrated Multi-satellitE Retrievals for the Global Precipitation Measurement mission (IMERG) has been widely evaluated. However, most of these studies focus on the ultimate merged satellite-gauge precipitation estimate and neglect the valuable intermediate estimates which directly guide the improvement of the IMERG product. This research aims to identify the error sources of the latest IMERG version 6 by evaluating the intermediate and ultimate precipitation estimates, and further examine the influences of regional topography and surface type on these errors. Results show that among six passive microwave (PMW) sensors, the Microwave Humidity Sounder (MHS) has outstanding comprehensive behavior, and Special Sensor Microwave Imager/Sounder (SSMIS) operates advanced at precipitation detection, while the Sounder for Atmospheric Profiling of Humidity in the Intertropics by Radiometry (SAPHIR) has the worst performance. More precipitation events are detected with larger quantitative uncertainty in low-lying places than in highlands, in urban and water body areas than in other places, and more in coastal areas than in inland regions. Infrared (IR) estimate has worse performance than PMW, and the precipitation detectability of IR is more sensitive to the factors of elevation and the distance to the coast, as larger critical successful index (CSI) over lowlands and coastal areas. PMW morphing and the mixing of PMW and IR algorithms partly reverse the conservative feature of the precipitation detection of PMW and IR estimates, resulting in higher probability of detection (POD) and false alert ratio (FAR). Finally, monthly gauge calibration improves most of the statistical indicators and reduces the influence of elevation and surface type factor on these errors.


2016 ◽  
Vol 33 (12) ◽  
pp. 2639-2654 ◽  
Author(s):  
Wesley Berg ◽  
Stephen Bilanow ◽  
Ruiyao Chen ◽  
Saswati Datta ◽  
David Draper ◽  
...  

AbstractThe Global Precipitation Measurement (GPM) mission is a constellation-based satellite mission designed to unify and advance precipitation measurements using both research and operational microwave sensors. This requires consistency in the input brightness temperatures (Tb), which is accomplished by intercalibrating the constellation radiometers using the GPM Microwave Imager (GMI) as the calibration reference. The first step in intercalibrating the sensors involves prescreening the sensor Tb to identify and correct for calibration biases across the scan or along the orbit path. Next, multiple techniques developed by teams within the GPM Intersatellite Calibration Working Group (XCAL) are used to adjust the calibrations of the constellation radiometers to be consistent with GMI. Comparing results from multiple approaches helps identify flaws or limitations of a given technique, increase confidence in the results, and provide a measure of the residual uncertainty. The original calibration differences relative to GMI are generally within 2–3 K for channels below 92 GHz, although AMSR2 exhibits larger differences that vary with scene temperature. SSMIS calibration differences also vary with scene temperature but to a lesser degree. For SSMIS channels above 150 GHz, the differences are generally within ~2 K with the exception of SSMIS on board DMSP F19, which ranges from 7 to 11 K colder than GMI depending on frequency. The calibrations of the cross-track radiometers agree very well with GMI with values mostly within 0.5 K for the Sondeur Atmosphérique du Profil d’Humidité Intertropicale par Radiométrie (SAPHIR) and the Microwave Humidity Sounder (MHS) sensors, and within 1 K for the Advanced Technology Microwave Sounder (ATMS).


2005 ◽  
Vol 22 (7) ◽  
pp. 909-929 ◽  
Author(s):  
Hirohiko Masunaga ◽  
Christian D. Kummerow

Abstract A methodology to analyze precipitation profiles using the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and precipitation radar (PR) is proposed. Rainfall profiles are retrieved from PR measurements, defined as the best-fit solution selected from precalculated profiles by cloud-resolving models (CRMs), under explicitly defined assumptions of drop size distribution (DSD) and ice hydrometeor models. The PR path-integrated attenuation (PIA), where available, is further used to adjust DSD in a manner that is similar to the PR operational algorithm. Combined with the TMI-retrieved nonraining geophysical parameters, the three-dimensional structure of the geophysical parameters is obtained across the satellite-observed domains. Microwave brightness temperatures are then computed for a comparison with TMI observations to examine if the radar-retrieved rainfall is consistent in the radiometric measurement space. The inconsistency in microwave brightness temperatures is reduced by iterating the retrieval procedure with updated assumptions of the DSD and ice-density models. The proposed methodology is expected to refine the a priori rain profile database and error models for use by parametric passive microwave algorithms, aimed at the Global Precipitation Measurement (GPM) mission, as well as a future TRMM algorithms.


Sign in / Sign up

Export Citation Format

Share Document