Daily Rainfall Estimate by Emissivity Temporal Variation from 10 Satellites

Author(s):  
Yalei You ◽  
S. Joseph Munchak ◽  
Christa Peters-Lidard ◽  
Sarah Ringerud

AbstractRainfall retrieval algorithms for passive microwave radiometers often exploits the brightness temperature depression due to ice scattering at high frequency channels (≥ 85 GHz) over land. This study presents an alternate method to estimate the daily rainfall amount using the emissivity temporal variation (i.e., Δe) under rain-free conditions at low frequency channels (19, 24 and 37 GHz). Emissivity is derived from 10 passive microwave radiometers, including the Global Precipitation Measurement (GPM) Microwave Imager (GMI), the Advanced Microwave Scanning Radiometer 2 (AMSR2), three Special Sensor Microwave Imager/Sounder (SSMIS), the Advanced Technology Microwave Sounder (ATMS), and four Advanced Microwave Sounding Unit-A (AMSU-A). Four different satellite combination schemes are used to derive the Δe for daily rainfall estimates. They are all-10-satellites, 5-imagers, 6-satellites with very different equator crossing times, and GMI-only. Results show that Δe from all-10-satellites has the best performance with a correlation of 0.60 and RMSE of 6.52 mm, comparing with the integrated multi-satellite retrievals (IMERG) final run product. The 6-satellites scheme has comparable performance with all-10-satellites scheme. The 5-imagers scheme performs noticeably worse with a correlation of 0.49 and RMSE of 7.28 mm, while the GMI-only scheme performs the worst with a correlation of 0.25 and RMSE of 11.36 mm. The inferior performance from the 5-imagers and GMI-only schemes can be explained by the much longer revisit time, which cannot accurately capture the emissivity temporal variation.

2020 ◽  
Vol 21 (4) ◽  
pp. 705-728 ◽  
Author(s):  
Yalei You ◽  
Veljko Petkovic ◽  
Jackson Tan ◽  
Rachael Kroodsma ◽  
Wesley Berg ◽  
...  

AbstractThis study assesses the level-2 precipitation estimates from 10 radiometers relative to Global Precipitation Measurement (GPM) Ku-band precipitation radar (KuPR) in two parts. First, nine sensors—four imagers [Advanced Microwave Scanning Radiometer 2 (AMSR2) and three Special Sensor Microwave Imager/Sounders (SSMISs)] and five sounders [Advanced Technology Microwave Sounder (ATMS) and four Microwave Humidity Sounders (MHSs)]—are evaluated over the 65°S–65°N region. Over ocean, imagers outperform sounders, primarily due to the usage of low-frequency channels. Furthermore, AMSR2 is clearly superior to SSMISs, likely due to the finer footprint size. Over land all sensors perform similarly except the noticeably worse performance from ATMS and SSMIS-F17. Second, we include the Sondeur Atmospherique du Profil d’Humidite Intertropicale par Radiometrie (SAPHIR) into the evaluation process, contrasting it against other sensors in the SAPHIR latitudes (30°S–30°N). SAPHIR has a slightly worse detection capability than other sounders over ocean but comparable detection performance to MHSs over land. The intensity estimates from SAPHIR show a larger normalized root-mean-square-error over both land and ocean, likely because only 183.3-GHz channels are available. Currently, imagers are preferred to sounders when level-2 estimates are incorporated into level-3 products. Our results suggest a sensor-specific priority order. Over ocean, this study indicates a priority order of AMSR2, SSMISs, MHSs and ATMS, and SAPHIR. Over land, SSMIS-F17, ATMS and SAPHIR should be given a lower priority than the other sensors.


2016 ◽  
Vol 33 (8) ◽  
pp. 1649-1671 ◽  
Author(s):  
Eun-Kyoung Seo ◽  
Sung-Dae Yang ◽  
Mircea Grecu ◽  
Geun-Hyeok Ryu ◽  
Guosheng Liu ◽  
...  

AbstractUsing Tropical Rainfall Measuring Mission (TRMM) observations from storms collected over the oceans surrounding East Asia, during summer, a method of creating physically consistent cloud-radiation databases to support satellite radiometer retrievals is introduced. In this method, vertical profiles of numerical model-simulated cloud and precipitation fields are optimized against TRMM radar and radiometer observations using a hybrid empirical orthogonal function (EOF)–one-dimensional variational (1DVAR) approach.The optimization is based on comparing simulated to observed radar reflectivity profiles and the corresponding passive microwave observations at the frequencies of the TRMM Microwave Imager (TMI) instrument. To minimize the discrepancies between the actual and the synthetic observations, the simulated cloud and precipitation profiles are optimized by adjusting the contents of the hydrometeors. To reduce the dimension of the hydrometeor content profiles in the optimization, multivariate relations among hydrometeor species are used.After applying the optimization method to modify the simulated clouds, the optimized cloud-radiation database has a joint distribution of reflectivity and associated brightness temperatures that is considerably closer to that observed by TRMM PR and TMI, especially at 85 GHz. This implies that the EOF–1DVAR approach can generate profiles with realistic distributions of frozen hydrometeors, such as snow and graupel. This approach may be similarly adapted to operate with the variety and capabilities of the passive microwave radiometers that compose the Global Precipitation Measurement (GPM) constellation. Furthermore, it can be extended to other oceanic regions and seasons.


2018 ◽  
Vol 32 (1) ◽  
pp. 3-13 ◽  
Author(s):  
Xiping Zeng ◽  
Gail Skofronick-Jackson ◽  
Lin Tian ◽  
Amber E. Emory ◽  
William S. Olson ◽  
...  

Abstract Information about the characteristics of ice particles in clouds is necessary for improving our understanding of the states, processes, and subsequent modeling of clouds and precipitation for numerical weather prediction and climate analysis. Two NASA passive microwave radiometers, the satellite-borne Global Precipitation Measurement (GPM) Microwave Imager (GMI) and the aircraft-borne Conical Scanning Millimeter-Wave Imaging Radiometer (CoSMIR), measure vertically and horizontally polarized microwaves emitted by clouds (including precipitating particles) and Earth’s surface below. In this paper, GMI (or CoSMIR) data are analyzed with CloudSat (or aircraft-borne radar) data to find polarized difference (PD) signals not affected by the surface, thereby obtaining the information on ice particles. Statistical analysis of 4 years of GMI and CloudSat data, for the first time, reveals that optically thick clouds contribute positively to GMI PD at 166 GHz over all the latitudes and their positive magnitude of 166-GHz GMI PD varies little with latitude. This result suggests that horizontally oriented ice crystals in thick clouds are common from the tropics to high latitudes, which contrasts the result of Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) that horizontally oriented ice crystals are rare in optically thin ice clouds.


2021 ◽  
Author(s):  
Yalei You ◽  
Christa Peters-Lidard ◽  
Stephen Munchak ◽  
Sarah Ringerud

<p>Current microwave precipitation retrieval algorithms utilize the instantaneous brightness temperature (TB) from a single satellite to estimate the precipitation rate. This study proposed to add the time-dimension into the precipitation estimation process by using the TB (or emissivity) temporal variation (ΔTB or Δe) derived from the Global Precipitation Measurement (GPM) microwave radiometer constellation.  Results showed that (1) ΔTB can improve the precipitation estimation over the cold surfaces (i.e., snow-covered region) through minimizing the microwave land surface emissivity’s influence; (2) Δe under the clear-sky conditions can accurately estimate the daily rainfall accumulation; and (3) ΔTB can be used to identify the liquid raindrop signature over the low surface emissivity areas. This study highlights the importance of maintaining the current passive microwave satellite constellation.</p>


Author(s):  
Yalei You ◽  
Christa Peters-Lidard ◽  
S. Joseph Munchak ◽  
Jackson Tan ◽  
Scott Braun ◽  
...  

AbstractPrevious studies showed that conical scanning radiometers greatly outperform cross-track scanning radiometers for precipitation retrieval over ocean. This study demonstrates a novel approach to improve precipitation rates at the cross-track scanning radiometers’ observation time by propagating the conical scanning radiometers’ retrievals to the cross-track scanning radiometers’ observation time. The improved precipitation rate is a weighted average of original cross-track radiometers’ retrievals and retrievals propagated from a conical scanning radiometer. The cross-track scanning radiometers include the Advanced Technology Microwave Sounder (ATMS) onboard the NPP satellite and four Microwave Humidity Sounders (MHSs). The conical scanning radiometers include the Advanced Microwave Scanning Radiometer 2 (AMSR2) and three Special Sensor Microwave Imager/Sounders (SSMISs), while the precipitation retrievals from the Global Precipitation Measurement (GPM) Microwave Imager (GMI) are taken as the reference. Results show that the morphed precipitation rates agree much better with the reference. The degree of improvement depends on several factors, including the propagated precipitation source, the time interval between the cross-track scanning radiometer and the conical scanning radiometer, the precipitation type (convective vs. stratiform), the precipitation events’ size, and the geolocation. The study has potential to greatly improve high-impact weather systems monitoring (e.g., hurricanes) and multi-satellite precipitation products. It may also enhance the usefulness of future satellite missions with cross-track scanning radiometers onboard.


2016 ◽  
Vol 33 (12) ◽  
pp. 2639-2654 ◽  
Author(s):  
Wesley Berg ◽  
Stephen Bilanow ◽  
Ruiyao Chen ◽  
Saswati Datta ◽  
David Draper ◽  
...  

AbstractThe Global Precipitation Measurement (GPM) mission is a constellation-based satellite mission designed to unify and advance precipitation measurements using both research and operational microwave sensors. This requires consistency in the input brightness temperatures (Tb), which is accomplished by intercalibrating the constellation radiometers using the GPM Microwave Imager (GMI) as the calibration reference. The first step in intercalibrating the sensors involves prescreening the sensor Tb to identify and correct for calibration biases across the scan or along the orbit path. Next, multiple techniques developed by teams within the GPM Intersatellite Calibration Working Group (XCAL) are used to adjust the calibrations of the constellation radiometers to be consistent with GMI. Comparing results from multiple approaches helps identify flaws or limitations of a given technique, increase confidence in the results, and provide a measure of the residual uncertainty. The original calibration differences relative to GMI are generally within 2–3 K for channels below 92 GHz, although AMSR2 exhibits larger differences that vary with scene temperature. SSMIS calibration differences also vary with scene temperature but to a lesser degree. For SSMIS channels above 150 GHz, the differences are generally within ~2 K with the exception of SSMIS on board DMSP F19, which ranges from 7 to 11 K colder than GMI depending on frequency. The calibrations of the cross-track radiometers agree very well with GMI with values mostly within 0.5 K for the Sondeur Atmosphérique du Profil d’Humidité Intertropicale par Radiométrie (SAPHIR) and the Microwave Humidity Sounder (MHS) sensors, and within 1 K for the Advanced Technology Microwave Sounder (ATMS).


2021 ◽  
Author(s):  
Jiseob Kim ◽  
Dong-Bin Shin

<p>Spaceborne passive microwave sensors have been developed to improve the knowledge of precipitation systems based on channels that interact directly with hydrometeors in clouds. In particular, understanding the global distribution of precipitation is one of the main missions. Prior to these precipitation studies, many researchers tend to implement the rain/no-rain classification (RNC) procedure. As a simple way, the polarized corrected temperature at 89 GHz (PCT89) from passive microwave radiometry has been widely used to identify rain pixels. The PCT89 can estimate the scattering intensity accompanied by precipitating clouds while minimizing the effects of the surface at high resolution, however, the diversity of the hydrometeor distributions can be a problem in the use of a consistent cut-off threshold. Therefore, the purpose of this study is to evaluate differences in the accuracy of the PCT-based RNC method induced by the various hydrometeor distributions and to present a new perspective to users so that it can be used appropriately. Precipitation data observed by the global precipitation measurement (GPM) microwave imager (GMI) for the period from January to December of 2015 in the tropics were used in the study. Based on the classification algorithm of the GPM dual precipitation radar (DPR), the precipitation data were subdivided into 11 types (3 stratiform types, 4 convective types, and others), and then a statistical verification was attempted to ensure that the cut-off threshold was appropriate. The PCT89-based RNC method leads to an increase of 70% and 54% in the number of two significant stratiform types compared to the DPR precipitation flag. On the other hand, the convective types decreased by up to 53%. Although regional diversity could lead to systematic differences in the verification, they did not exceed magnitudes of the difference between precipitation types. Therefore, this study suggests that the precipitations identified by the PCT89-based RNC method have features that enhance the bias toward the stratiform type.</p>


2005 ◽  
Vol 22 (7) ◽  
pp. 909-929 ◽  
Author(s):  
Hirohiko Masunaga ◽  
Christian D. Kummerow

Abstract A methodology to analyze precipitation profiles using the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and precipitation radar (PR) is proposed. Rainfall profiles are retrieved from PR measurements, defined as the best-fit solution selected from precalculated profiles by cloud-resolving models (CRMs), under explicitly defined assumptions of drop size distribution (DSD) and ice hydrometeor models. The PR path-integrated attenuation (PIA), where available, is further used to adjust DSD in a manner that is similar to the PR operational algorithm. Combined with the TMI-retrieved nonraining geophysical parameters, the three-dimensional structure of the geophysical parameters is obtained across the satellite-observed domains. Microwave brightness temperatures are then computed for a comparison with TMI observations to examine if the radar-retrieved rainfall is consistent in the radiometric measurement space. The inconsistency in microwave brightness temperatures is reduced by iterating the retrieval procedure with updated assumptions of the DSD and ice-density models. The proposed methodology is expected to refine the a priori rain profile database and error models for use by parametric passive microwave algorithms, aimed at the Global Precipitation Measurement (GPM) mission, as well as a future TRMM algorithms.


2020 ◽  
Author(s):  
Samuel Favrichon ◽  
Carlos Jimenez ◽  
Catherine Prigent

Abstract. Microwave remote sensing can be used to monitor the time evolution of some key parameters over land, such as land surface temperature or surface water extent. Observations are made with instrument such as the Scanning Microwave Multichannel Radiometer (SMMR) before 1987, the Special Sensor Microwave/Imager (SSM/I) and the following Special Sensor Microwave Imager/Sounder (SSMIS) from 1987 and still operating, to the more recent Global Precipitation Mission Microwave Imager (GMI). As these instruments differ on some of their characteristics and use different calibration schemes, they need to be inter-calibrated before long time series products can be derived from the observations. Here an inter-calibration method is designed to remove major inconsistencies between the SMMR and other microwave radiometers for the 18 GHz and 37 GHz channels over continental surfaces. Because of a small overlap in observations and a ~6 h difference in overpassing times between SMMR and SSM/I, GMI was chosen as a reference despite the lack of a common observing period. The diurnal cycles from three years of GMI brightness temperatures are first calculated, and then used to evaluate SMMR differences. Based on a statistical analysis of the differences, a simple linear correction is implemented to calibrate SMMR on GMI. This correction is shown to also reduce the biases between SMMR and SSM/I, and can then be applied to SMMR observations to make them more coherent with existing data record of microwave brightness temperatures over continental surfaces.


Sign in / Sign up

Export Citation Format

Share Document