scholarly journals On Spectral Analysis of Mesoscale Eddies. Part I: Linear Analysis

2013 ◽  
Vol 43 (12) ◽  
pp. 2505-2527 ◽  
Author(s):  
P. Berloff ◽  
I. Kamenkovich

Abstract This study aims to understand the ocean’s circulation, which is characterized by the presence of multiple alternating zonal jets and transient mesoscale eddies, by systematic analysis of the underlying linear dynamics of this system. For this purpose, properties of the linear normal modes such as growth rates, dispersion, spatial structure, and nonlinear self-interactions are explored for a hierarchy of idealized, vertically, and horizontally sheared flows with increasing complexity. The authors find that large-scale background vertical shear, alternating multiple zonal jets, bottom friction, and the Reynolds number have important effects on these modes. This study hypothesizes that when these effects are taken into account, the linear results can be used to predict many properties of nonlinear mesoscale eddies. This hypothesis is confirmed in Part II of this paper.

2010 ◽  
Vol 67 (9) ◽  
pp. 2766-2784 ◽  
Author(s):  
Hylke de Vries ◽  
John Methven ◽  
Thomas H. A. Frame ◽  
Brian J. Hoskins

Abstract A theoretical framework is developed for the evolution of baroclinic waves with latent heat release parameterized in terms of vertical velocity. Both wave–conditional instability of the second kind (CISK) and large-scale rain approaches are included. The new quasigeostrophic framework covers evolution from general initial conditions on zonal flows with vertical shear, planetary vorticity gradient, a lower boundary, and a tropopause. The formulation is given completely in terms of potential vorticity, enabling the partition of perturbations into Rossby wave components, just as for the dry problem. Both modal and nonmodal development can be understood to a good approximation in terms of propagation and interaction between these components alone. The key change with moisture is that growing normal modes are described in terms of four counterpropagating Rossby wave (CRW) components rather than two. Moist CRWs exist above and below the maximum in latent heating, in addition to the upper- and lower-level CRWs of dry theory. Four classifications of baroclinic development are defined by quantifying the strength of interaction between the four components and identifying the dominant pairs, which range from essentially dry instability to instability in the limit of strong heating far from boundaries, with type-C cyclogenesis and diabatic Rossby waves being intermediate types. General initial conditions must also include passively advected residual PV, as in the dry problem.


2016 ◽  
Vol 802 ◽  
pp. 464-489 ◽  
Author(s):  
Guohua Wang ◽  
Xiaojing Zheng

A field observation array for the atmospheric surface layer (ASL) was built on a dry flat bed of Qingtu Lake in Minqin (China) as the Qingtu Lake Observation Array (QLOA) site, which is similar to the Surface Layer Turbulence and Environmental Science Test (SLTEST) site in the Utah (USA) Western desert. The present observation array can synchronously perform multi-point measurements of wind velocity and temperature at different vertical and streamwise positions. In other words, three-dimensional turbulent ASL flows can be measured at the QLOA station and Reynolds numbers as high as $Re_{\unicode[STIX]{x1D70F}}\sim O(10^{6})$ can be achieved with steady wind conditions. By careful selection and pretreatment for measured data of more than 1200 h, the QLOA data have been validated to be reliable for high Reynolds number turbulent boundary layer research. Results from correlation and spectral analysis confirm that very large scale motions (VLSMs) exist in the ASL at a Reynolds number up to $Re_{\unicode[STIX]{x1D70F}}\approx 4\times 10^{6}$. Through premultiplied spectral analysis, it is revealed that the spectral energy in the high-wavenumber region decreases with height, similar to turbulent boundary layers at low or moderate Reynolds numbers, while it increases with height in the low-wavenumber region resulting in a log–linear increase of VLSMs energy with height, which is different from turbulent boundary layers at low or moderate Reynolds numbers. The present analyses support the view that the evolution of the VLSMs cannot be fully attributed to a ‘bottom-up’ mechanism alone, and probably other mechanisms, including a ‘top-down’ mechanism, also play a role.


2005 ◽  
Vol 62 (12) ◽  
pp. 4384-4399 ◽  
Author(s):  
Rolando R. Garcia ◽  
Ruth Lieberman ◽  
James M. Russell ◽  
Martin G. Mlynczak

Abstract Observations made by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on board NASA’s Thermosphere–Ionosphere–Mesosphere Energetics and Dynamics (TIMED) satellite have been processed using Salby’s fast Fourier synoptic mapping (FFSM) algorithm. The mapped data provide a first synoptic look at the mean structure and traveling waves of the mesosphere and lower thermosphere (MLT) since the launch of the TIMED satellite in December 2001. The results show the presence of various wave modes in the MLT, which reach largest amplitude above the mesopause and include Kelvin and Rossby–gravity waves, eastward-propagating diurnal oscillations (“non-sun-synchronous tides”), and a set of quasi-normal modes associated with the so-called 2-day wave. The latter exhibits marked seasonal variability, attaining large amplitudes during the solstices and all but disappearing at the equinoxes. SABER data also show a strong quasi-stationary Rossby wave signal throughout the middle atmosphere of the winter hemisphere; the signal extends into the Tropics and even into the summer hemisphere in the MLT, suggesting ducting by westerly background zonal winds. At certain times of the year, the 5-day Rossby normal mode and the 4-day wave associated with instability of the polar night jet are also prominent in SABER data.


2009 ◽  
Vol 37 (1) ◽  
pp. 46-50 ◽  
Author(s):  
Adi Leiba ◽  
Dagan Schwartz ◽  
Talor Eran ◽  
Amir Blumenfeld ◽  
Daniel Laor ◽  
...  

A numerical study on the transition from laminar to turbulent of two-dimensional fuel jet flames developed in a co-flowing air stream was made by adopting the flame surface model of infinite chemical reaction rate and unit Lewis number. The time dependent compressible Navier–Stokes equation was solved numerically with the equation for coupling function by using a finite difference method. The temperature-dependence of viscosity and diffusion coefficient were taken into account so as to study effects of increases of these coefficients on the transition. The numerical calculation was done for the case when methane is injected into a co-flowing air stream with variable injection Reynolds number up to 2500. When the Reynolds number was smaller than 1000 the flame, as well as the flow, remained laminar in the calculated domain. As the Reynolds number was increased above this value, a transition point appeared along the flame, downstream of which the flame and flow began to fluctuate. Two kinds of fluctuations were observed, a small scale fluctuation near the jet axis and a large scale fluctuation outside the flame surface, both of the same origin, due to the Kelvin–Helmholtz instability. The radial distributions of density and transport coefficients were found to play dominant roles in this instability, and hence in the transition mechanism. The decreased density in the flame accelerated the instability, while the increase in viscosity had a stabilizing effect. However, the most important effect was the increase in diffusion coefficient. The increase shifted the flame surface, where the large density decrease occurs, outside the shear layer of the jet and produced a thick viscous layer surrounding the jet which effectively suppressed the instability.


1981 ◽  
Vol 110 ◽  
pp. 39-71 ◽  
Author(s):  
A. K. M. F. Hussain ◽  
K. B. M. Q. Zaman

The ‘preferred mode’ of an incompressible axisymmetric free jet has been organized through controlled perturbation, and spatial distributions of time-average as well as phase-average flow properties in the near field are documented. The excitation produces noticeable changes in the time-average measures of the jet, although these changes are less dramatic than those for the excitation producing stable vortex pairing. For different stages in the evolution of the preferred-mode coherent structure, the phase-average vorticity, coherent Reynolds stress, and incoherent turbulence intensities and Reynolds stress have been educed through phase-locked hot-wire measurements, over the spatial extent of the structure and without invoking the Taylor hypothesis. For a particular stage of the evolution (i.e. when the structure is centred at x/D ≃ 3) the distributions of these quantities have been compared for both initially laminar and fully turbulent exit boundary layers, and for four jet Reynolds numbers. The relative merits of the coherent structure streamline and pseudo-stream-function patterns, as compared with phase-average velocity contours, for structure boundary identification have been discussed. The structure shape and size agree closely with those inferred from the average streamline pattern of the natural structure educed by Yule (1978).These data as well as τ-spectra show that even excitation at the preferred mode cannot sustain the initially organized large-scale coherent structure beyond eight diameters from the jet exit. The background turbulence is organized by the coherent motions in such a way that the maximum rate of decrease of the coherent vorticity occurs at the structure centres which are the saddle points of the background-turbulence Reynolds-stress distributions. The structure centres are also the locations of peak phase-average turbulence intensities. The evolving shape of the structure as it travels downstream helps explain the transverse variations of the wavelength and convection velocity across the mixing layer. The coherent structure characteristics are found to be independent of whether the initial boundary layer is laminar or turbulent, but depend somewhat on the jet Reynolds number. With increasing Reynolds number, the structure decreases in the streamwise length and increases in the radial width and becomes relatively more energetic, and more efficient in the production of coherent Reynolds stress.


2010 ◽  
Vol 662 ◽  
pp. 409-446 ◽  
Author(s):  
G. SILANO ◽  
K. R. SREENIVASAN ◽  
R. VERZICCO

We summarize the results of an extensive campaign of direct numerical simulations of Rayleigh–Bénard convection at moderate and high Prandtl numbers (10−1 ≤ Pr ≤ 104) and moderate Rayleigh numbers (105 ≤ Ra ≤ 109). The computational domain is a cylindrical cell of aspect ratio Γ = 1/2, with the no-slip condition imposed on all boundaries. By scaling the numerical results, we find that the free-fall velocity should be multiplied by $1/\sqrt{{\it Pr}}$ in order to obtain a more appropriate representation of the large-scale velocity at high Pr. We investigate the Nusselt and the Reynolds number dependences on Ra and Pr, comparing the outcome with previous numerical and experimental results. Depending on Pr, we obtain different power laws of the Nusselt number with respect to Ra, ranging from Ra2/7 for Pr = 1 up to Ra0.31 for Pr = 103. The Nusselt number is independent of Pr. The Reynolds number scales as ${\it Re}\,{\sim}\,\sqrt{{\it Ra}}/{\it Pr}$, neglecting logarithmic corrections. We analyse the global and local features of viscous and thermal boundary layers and their scaling behaviours with respect to Ra and Pr, and with respect to the Reynolds and Péclet numbers. We find that the flow approaches a saturation state when Reynolds number decreases below the critical value, Res ≃ 40. The thermal-boundary-layer thickness increases slightly (instead of decreasing) when the Péclet number increases, because of the moderating influence of the viscous boundary layer. The simulated ranges of Ra and Pr contain steady, periodic and turbulent solutions. A rough estimate of the transition from the steady to the unsteady state is obtained by monitoring the time evolution of the system until it reaches stationary solutions. We find multiple solutions as long-term phenomena at Ra = 108 and Pr = 103, which, however, do not result in significantly different Nusselt numbers. One of these multiple solutions, even if stable over a long time interval, shows a break in the mid-plane symmetry of the temperature profile. We analyse the flow structures through the transitional phases by direct visualizations of the temperature and velocity fields. A wide variety of large-scale circulation and plume structures has been found. The single-roll circulation is characteristic only of the steady and periodic solutions. For other regimes at lower Pr, the mean flow generally consists of two opposite toroidal structures; at higher Pr, the flow is organized in the form of multi-jet structures, extending mostly in the vertical direction. At high Pr, plumes mainly detach from sheet-like structures. The signatures of different large-scale structures are generally well reflected in the data trends with respect to Ra, less in those with respect to Pr.


Sign in / Sign up

Export Citation Format

Share Document