scholarly journals The Influence of Periodic Forcing on the Time Dependence of Western Boundary Currents: Phase Locking, Chaos, and Mechanisms of Low-Frequency Variability

2016 ◽  
Vol 46 (4) ◽  
pp. 1117-1136 ◽  
Author(s):  
Andrew E. Kiss ◽  
Leela M. Frankcombe

AbstractIn this study an idealized gyre is put into a temporally periodic state by a steady wind stress curl forcing, and its nonlinear response to variable forcing is investigated by a detailed parameter survey varying the time-mean component of the wind and the amplitude and frequency of a periodic component. Periodic wind variations exceeding ~0.5% profoundly affect the western boundary current (WBC) time dependence, yielding regime diagrams with intricately interleaved regions of phase locking, quasiperiodicity, and chaos. In phase-locked states, the WBC period is locked to a rational multiple of the forcing period and can be shifted far outside its natural range. Quasiperiodic states can exhibit long intervals of near-synchrony interrupted periodically by brief slips out of phase with the forcing. Hysteresis and a period-doubling route to chaos are also found. The nonlinear WBC response can include variability at long time scales that are absent from both the forcing and the steadily driven current; this is a new mechanism for the generation of low-frequency WBC variability. These behaviors and their parameter dependence resemble the Devil’s staircase found in the “circle map” model of a periodically forced nonlinear oscillator, but with differences attributable to higher-dimensional dynamics. These nonlinear effects occur with forcing amplitudes in the observed range of the annual wind stress curl cycle and therefore should be considered when inferring the cause of observed WBC time scales. These results suggest that studies omitting either forcing variation or nonlinearity provide an unrealistically narrow view of the possible origins of time dependence in WBCs.

2021 ◽  
Author(s):  
Venisse Schossler ◽  
Francisco Aquino ◽  
Jefferson Simões ◽  
Pedro Reis ◽  
Denilson Viana

Abstract Pressure gradients and winds play an important role in Southern Hemisphere (SH) sea levels, which are currently associated with the positive trend of the Southern Annular Mode (SAM). This study investigated regional sea level anomalies (SLAs) in the southern coast Brazil using altimeter data (1993–2019), post-processed by the X-TRACK (CTOH/LEGOS). We observed a negative SLA from 1993 to 2009 and a positive SLA from 2010 to 2019, with upward trends throughout the evaluation period. We analyzed wind stress curl, pressure, and wind fields at sea level (FNMOC and ERA 5, respectively) in addition to sea surface temperature and height anomalies (SSTA/SSHA-OISST) in the South Atlantic Ocean (SAO) for 1993–2009 and 2010–2019. In relation to the first period, the second shows the enhancement in Hadley and Walker cells and trade winds, in addition to greater SSTA and SSHA in SAO. The SAO subtropical gyre and zonal winds at 45°S contribute to the intensification of the western boundary current. A greater pressure gradient between the SAO surface and the southeast of South America is noteworthy. Regionally, the positive SAM brings an increase in sea level to the study area, caused by greater wind stress and variability in heat flows.


2009 ◽  
Vol 39 (8) ◽  
pp. 1888-1904 ◽  
Author(s):  
Barry A. Klinger ◽  
Carlos Cruz

Abstract A substantial component of North Atlantic Deep Water formation may be driven by westerly wind stress over the Southern Ocean. Variability of this wind stress on decadal time scales may lead to circulation variability far from the forcing region. The Hybrid Coordinate Ocean Model (HYCOM), a numerical ocean model, is used to investigate the spatial patterns and the time scales associated with such wind variability. The evolution of circulation and density anomalies is observed by comparing one 80-yr simulation, forced in part by relatively strong Southern Hemisphere westerlies, with a simulation driven by climatological wind. The volume transport anomaly takes about 10 yr to reach near-full strength in the entire Southern Hemisphere; however, in the Northern Hemisphere, it grows for the duration of the run. The Southern Hemisphere Indo-Pacific volume transport anomaly is about twice the strength of that found in the Atlantic. In the thermocline, water exits the southern westerlies belt in a broad flow that feeds a western boundary current (WBC) in both the Atlantic and Pacific Oceans. These WBCs in turn feed an Indonesian Throughflow from the Pacific and cyclonic gyres in the far north, which are broadly consistent with the Stommel–Arons theory. The deep return flow in each hemisphere is strongly affected by deep-sea ridges, which leads to a number of midocean “WBCs.” The wind perturbation causes isopycnals to sink over most of the basin. After about 20 yr, this sinking is very roughly uniform with latitude, though it varies by basin.


2021 ◽  
Author(s):  
Eleanor Frajka-Williams ◽  
William E. Johns ◽  
Harry L. Bryden ◽  
David A. Smeed ◽  
Aurelie Duchez ◽  
...  

<p>The Antilles Current is a narrow, northward flowing boundary current in the western Atlantic just east of the Bahamas. Its role in the larger scale circulation has been debated: alternately thought to be part of the western boundary closure of the gyre circulation or the northward flowing limb of the meridional overturning circulation (MOC). From 19 years of moored current meter observations (1987--1991, 2004--2018), we define the strength of the Antilles Current by the net transport between the Bahamas and 76.5°W (spanning about 45 km zonally) and in the thermocline (0–1000 m). We find a mean northward transport of 3.5 Sv, substantial interannual variability, and no discernable trend since 1987. The interannual variability of the AC transport is independent of the variability of the Florida Current (the Gulf Stream through the Florida Straits). Instead, the Antilles Current contributes to the interannual variability of the MOC at 26°N, while the trend in the strength of the gyre circulation (defined as the transbasin thermocline transport minus the AC) is responsible for the trend in the MOC. In particular, the 2009/10 slowdown of the MOC resulted from a weaker northward AC transport, rather than an intensified gyre transport. Using the recent 14 years of in situ transport records, we compare the interannual variability of the gyre circulation to that of wind stress curl forcing via a Sverdrup transport calculation, identifying a potential role for wind stress curl (WSC) forcing at 26°N with a ~2 year lag until 2016.<span>  </span>From 2016, the predicted gyre circulation using WSC diverges from the measured gyre strength.</p>


2018 ◽  
Vol 35 (6) ◽  
pp. 1313-1329 ◽  
Author(s):  
N. V. Zilberman ◽  
D. H. Roemmich ◽  
S. T. Gille ◽  
J. Gilson

AbstractWestern boundary currents (WBCs) are highly variable narrow meandering jets, making assessment of their volume transports a complex task. The required high-resolution temporal and spatial measurements are available only at a limited number of sites. In this study a method is developed for improving estimates of the East Australian Current (EAC) mean transport and its low-frequency variability, using complementary modern datasets. The present calculation is a case study that will be extended to other subtropical WBCs. The method developed in this work will reduce uncertainties in estimates of the WBC volume transport and in the interannual mass and heat budgets of the meridional overturning circulations, improving our understanding of the response of WBCs to local and remote forcing on long time scales. High-resolution expendable bathythermograph (HR-XBT) profiles collected along a transect crossing the EAC system near Brisbane, Australia, are merged with coexisting profiles and parking-depth trajectories from Argo floats, and with altimetric sea surface height data. Using HR-XBT/Argo/altimetry data combined with Argo trajectory-based velocities at 1000 m, the 2004–15 mean poleward alongshore transport of the EAC is 19.5 ± 2.0 Sv (1 Sv ≡ 106 m3 s−1) of which 2.5 ± 0.5 Sv recirculate equatorward just offshore of the EAC. These transport estimates are consistent in their mean and variability with concurrent and nearly collocated moored observations at 27°S, and with earlier moored observations along 30°S. Geostrophic transport anomalies in the EAC system, including the EAC recirculation, show a standard deviation of ±3.1 Sv at interannual time scales between 2004 and 2015.


2018 ◽  
Vol 36 (3) ◽  
pp. 1
Author(s):  
Jessica S. Carvalho ◽  
Fabricio S. C. Oliveira ◽  
Edmo J. D. Campos

ABSTRACT. Previous studies have pointed out an intensification of the global western boundary currents induced by changes in the wind-stress curl patterns over the oceans. The Brazil Current (BC) is the western boundary current into the South Atlantic Subtropical Gyre, which flows southwards along the Brazilian coast. A numerical model is used to investigate the response of BC to this change in wind forcing between 1960-2010, across 30ºS. The results found here support the increasing trend noticed in the wind-stress curl and a poleward migration of the South Hemisphere westerlies in the past decades. The residual transport of BC at 30_S is composed by its southward main flow and the northward branch of a recirculation cell (Rec) east of the BC. Both the BC and Rec transports showed a decrease trend of 0.10 Sv dec1 and 0.28 Sv dec1, respectively. It suggests a southward migration of Rec in response to changes in the westerlies. The results also indicate a relative intensification in the western boundary transport and a strengthening in the South Atlantic Subtropical Gyre. Keywords: Western Boundary Current, Meridional Transport, HYCOM.RESUMO. Estudos anteriores apontam para uma intensificação das correntes de contorno oeste globais induzidas por mudanças no rotacional do estresse do vento sobre os oceanos. A Corrente do Brasil (CB) é a corrente de contorno oeste do giro Subtropical do Atlântico Sul, que flui para sul ao longo da costa brasileira. Um modelo numérico é usado para investigar a resposta da CB às mudanças na forçante do vento entre 1960-2010, ao longo de 30_S. Os resultados encontrados aqui suportam a tendência de aumento observada no rotacional do estresse do vento e a migração para o polo dos ventos de oeste do hemisfério sul nas ultimas décadas. O transporte residual da CB em 30ºS é composto pelo seu fluxo principal para sul e o braço para norte de uma célula de recirculação (Rec) a leste da CB. Ambos os transportes da CB e Rec mostraram uma tendência de redução de 0,10 Sv dec1 e 0,28 Sv dec1, respectivamente. Isto sugere uma migração para sul da Rec em resposta às mudanças dos ventos de oeste. Os resultados também indicam uma relativa intensificação do transporte na borda oeste e um fortalecimento do giro Subtropical do Atlântico Sul.Palavras-chave: Corrente de Contorno Oeste, Transporte Meridional, HYCOM.


2020 ◽  
Vol 33 (2) ◽  
pp. 707-726 ◽  
Author(s):  
Paige E. Martin ◽  
Brian K. Arbic ◽  
Andrew McC. Hogg ◽  
Andrew E. Kiss ◽  
James R. Munroe ◽  
...  

AbstractClimate variability is investigated by identifying the energy sources and sinks in an idealized, coupled, ocean–atmosphere model, tuned to mimic the North Atlantic region. The spectral energy budget is calculated in the frequency domain to determine the processes that either deposit energy into or extract energy from each fluid, over time scales from one day up to 100 years. Nonlinear advection of kinetic energy is found to be the dominant source of low-frequency variability in both the ocean and the atmosphere, albeit in differing layers in each fluid. To understand the spatial patterns of the spectral energy budget, spatial maps of certain terms in the spectral energy budget are plotted, averaged over various frequency bands. These maps reveal three dynamically distinct regions: along the western boundary, the western boundary current separation, and the remainder of the domain. The western boundary current separation is found to be a preferred region to energize oceanic variability across a broad range of time scales (from monthly to decadal), while the western boundary itself acts as the dominant sink of energy in the domain at time scales longer than 50 days. This study paves the way for future work, using the same spectral methods, to address the question of forced versus intrinsic variability in a coupled climate system.


Ocean Science ◽  
2019 ◽  
Vol 15 (3) ◽  
pp. 831-852 ◽  
Author(s):  
Maria Belmonte Rivas ◽  
Ad Stoffelen

Abstract. This paper analyzes the differences between ERA-Interim and ERA5 surface winds fields relative to Advanced Scatterometer (ASCAT) ocean vector wind observations, after adjustment for the effects of atmospheric stability and density, using stress-equivalent winds (U10S) and air–sea relative motion using ocean current velocities. In terms of instantaneous root mean square (rms) wind speed agreement, ERA5 winds show a 20 % improvement relative to ERA-Interim and a performance similar to that of currently operational ECMWF forecasts. ERA5 also performs better than ERA-Interim in terms of mean and transient wind errors, wind divergence and wind stress curl biases. Yet, both ERA products show systematic errors in the partition of the wind kinetic energy into zonal and meridional, mean and transient components. ERA winds are characterized by excessive mean zonal winds (westerlies) with too-weak mean poleward flows in the midlatitudes and too-weak mean meridional winds (trades) in the tropics. ERA stress curl is too cyclonic in midlatitudes and high latitudes, with implications for Ekman upwelling estimates, and lacks detail in the representation of sea surface temperature (SST) gradient effects (along the equatorial cold tongues and Western Boundary Current (WBC) jets) and mesoscale convective airflows (along the Intertropical Convergence Zone and the warm flanks for the WBC jets). It is conjectured that large-scale mean wind biases in ERA are related to their lack of high-frequency (transient wind) variability, which should be promoting residual meridional circulations in the Ferrel and Hadley cells.


1984 ◽  
Vol 35 (3) ◽  
pp. 273 ◽  
Author(s):  
JC Andrews ◽  
WC Dunlap ◽  
NF Bellamy

Temperatures were measured in a small lagoon in the windward reef flat of Davies Reef in the central Great Barrier Reef and examined on three time scales to gain three perspectives on thermal stratification and the trapping of bottom water. Profiling for stratification and dye revealed layering where bottom water was trapped and released by the successive capping and uncapping of the lagoon by a diurnal thermocline. A 1-month monitoring array revealed a solar synchronization, with the temperature of reef-flat water exceeding temperatures of lagoon water by up to 1 5�C within 1 h of midday, and lagoon stratification lagging this by 1 h. There was also a lunar synchronization with mixing proceeding during nocturnal rising tides. Lagoon surface and bottom temperatures were also monitored for 11 months. The amplitude of the diurnal stratification showed no coherence either with the amplitude of the tide (marked spring-neap tides) or with scalar wind stress. The low frequency amplitude of the diurnal oscillation was coherent with the longshore wind vector at periods near 3 6 days and in a band approximately from 10 to 40 days. Daily stratification increased when winds were poleward and decreased when winds were equatonvard. Events of flushing were separated on average by 9 h, but the most frequently observed separation was 5 h and only 10% of separations exceeded 18 h during the 11 months.


Sign in / Sign up

Export Citation Format

Share Document