scholarly journals Coral Reef Drag Coefficients—Surface Gravity Wave Enhancement

2018 ◽  
Vol 48 (7) ◽  
pp. 1555-1566 ◽  
Author(s):  
S. J. Lentz ◽  
J. H. Churchill ◽  
K. A. Davis

AbstractA primary challenge in modeling flow over shallow coral reefs is accurately characterizing the bottom drag. Previous studies over continental shelves and sandy beaches suggest surface gravity waves should enhance the drag on the circulation over coral reefs. The influence of surface gravity waves on drag over four platform reefs in the Red Sea is examined using observations from 6-month deployments of current and pressure sensors burst sampling at 1 Hz for 4–5 min. Depth-average current fluctuations U′ within each burst are dominated by wave orbital velocities uw that account for 80%–90% of the burst variance and have a magnitude of order 10 cm s−1, similar to the lower-frequency depth-average current Uavg. Previous studies have shown that the cross-reef bottom stress balances the pressure gradient over these reefs. A bottom stress estimate that neglects the waves (ρCdaUavg|Uavg|, where ρ is water density and Cda is a drag coefficient) balances the observed pressure gradient when uw is smaller than Uavg but underestimates the pressure gradient when uw is larger than Uavg (by a factor of 3–5 when uw = 2Uavg), indicating the neglected waves enhance the bottom stress. In contrast, a bottom stress estimate that includes the waves [ρCda(Uavg + U′)|Uavg + U′|)] balances the observed pressure gradient independent of the relative size of uw and Uavg, indicating that this estimate accounts for the wave enhancement of the bottom stress. A parameterization proposed by Wright and Thompson provides a reasonable estimate of the total bottom stress (including the waves) given the burst-averaged current and the wave orbital velocity.

1981 ◽  
Vol 102 ◽  
pp. 1-59 ◽  
Author(s):  
R. L. Snyder ◽  
F. W. Dobson ◽  
J. A. Elliott ◽  
R. B. Long

A joint experiment to study microscale fluctuations of atmospheric pressure above surface gravity waves was conducted in the Bight of Abaco, Bahamas, during November and December 1974. Field hardware included a three-dimensional array of six wave sensors and seven air-pressure sensors, one of which was mounted on a wave follower. The primary objectives of the study were to resolve differences in previous field measurements by Dobson (1971), Elliott (1972b) and Snyder (1974), and to estimate the vertical profile of wave-induced pressure and the corresponding input of energy and momentum to the wave field.Analysis of a pre-experiment intercalibration of instruments and of 30 h of field data partially removes the discrepancy between the previous measurements of the wave-induced component of the pressure and gives a consistent picture of the profile of this pressure over a limited range of dimensionless height and wind speed. Over this range the pressure decays approximately exponentially without change of phase; the decay is slightly less steep than predicted by potential theory. The corresponding momentum transfer is positive for wind speeds exceeding the phase speed. Extrapolation of present results to higher frequencies suggests that the total transfer is a significant fraction of the wind stress (0·1 to 1·0, depending on dimensionless fetch).Analysis of the turbulent component of the atmospheric pressure shows that the ‘intrinsic’ downwind coherence scale is typically an order-of-magnitude greater than the crosswind scale, consistent with a ‘frozen’ turbulence hypothesis. These and earlier data of Priestley (1965) and Elliott (1972c) suggest a horizontally isotropic ‘intrinsic’ turbulent pressure spectrum which decays ask−νwherekis the (horizontal) wave-number and ν is typically −2 to −3; estimates of this spectrum are computed for the present data. The implications of these findings for Phillips’ (1957) theory of wave growth are examined.


2008 ◽  
Vol 32 (9) ◽  
pp. 1696-1710 ◽  
Author(s):  
Eduardo Godoy ◽  
Axel Osses ◽  
Jaime H. Ortega ◽  
Alvaro Valencia

1973 ◽  
Vol 29 (3) ◽  
pp. 94-105 ◽  
Author(s):  
Ken Sasaki ◽  
Takashi Murakami

Wave Motion ◽  
2020 ◽  
pp. 102702
Author(s):  
M.A. Manna ◽  
S. Noubissie ◽  
J. Touboul ◽  
B. Simon ◽  
R.A. Kraenkel

Author(s):  
D. Hasselmann ◽  
J. Bösenberg ◽  
M. Dunckel ◽  
K. Richter ◽  
M. Grünewald ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document