Frequency Shift of Near-Inertial Waves in the South China Sea

2020 ◽  
Vol 50 (5) ◽  
pp. 1121-1135 ◽  
Author(s):  
Arnaud Le Boyer ◽  
Matthew H. Alford ◽  
Robert Pinkel ◽  
Tyler D. Hennon ◽  
Yiing J. Yang ◽  
...  

AbstractDespite sufficient wind forcing, internal waves in the South China Sea do not exhibit the strong near-inertial wave (NIW) peak that is typical in most of the world oceans. Using data from 10 contemporaneous moorings deployed in summer 2011, we show that strong isopycnal vertical tidal displacements transfer most of the near-inertial (NI) kinetic energy (KE) to frequencies higher than the inertial frequency in an Eulerian reference frame. Transforming to an isopycnal-following reference frame increases the KE at NI frequencies, suggesting the presence of NIWs. However, the projection onto a semi-Lagrangian coordinate system still underestimates the expected NI peak. To fully resolve NIWs requires the use of time-dependent vertical wavenumber–frequency spectra because the intrinsic frequency of the NIWs varies substantially, owing to Doppler shifting by lateral mesoscale flows. Here, we show NIW intrinsic frequency variations of ±0.2 cpd within few days, of similar magnitude as the observed variations of relative vorticity associated with the meandering Kuroshio.

2021 ◽  
Vol 13 (16) ◽  
pp. 3223
Author(s):  
Bing Yang ◽  
Po Hu ◽  
Yijun Hou

Characteristics of near-inertial waves (NIWs) induced by the tropical storm Noul in the South China Sea are analyzed based on in situ observations, remote sensing, and analysis data. Remote sensing sea level anomaly data suggests that the NIWs were influenced by a southwestward moving anticyclonic eddy. The NIWs had comparable spectral density with internal tides, with a horizontal velocity of 0.14–0.21 m/s. The near-inertial kinetic energy had a maximum value of 7.5 J/m3 and propagated downward with vertical group speed of 10 m/day. Downward propagation of near-inertial energy concentrated in smaller wavenumber bands overwhelmed upward propagation energy. The e-folding time of NIWs ranged from 4 to 11 days, and the larger e-folding time resulted from the mesoscale eddies with negative vorticity. Modified by background relative vorticity, the observed NIWs had both red-shifted and blue-shifted frequencies. The upward propagating NIWs had larger vertical phase speeds and wavelengths than downward propagating NIWs. There was energy transfer from the mesoscale field to NIWs with a maximum value of 8.5 × 10−9 m2 s−3 when total shear and relative vorticity of geostrophic currents were commensurate. Our results suggest that mesoscale eddies are a significant factor influencing the generation and propagation of NIWs in the South China Sea.


Sign in / Sign up

Export Citation Format

Share Document