Estimates and Implications of Surface Eddy Diffusivity in the Southern Ocean Derived from Tracer Transport

2006 ◽  
Vol 36 (9) ◽  
pp. 1806-1821 ◽  
Author(s):  
John Marshall ◽  
Emily Shuckburgh ◽  
Helen Jones ◽  
Chris Hill

Abstract Near-surface “effective diffusivities” associated with geostrophic eddies in the Southern Ocean are estimated by numerically monitoring the lengthening of idealized tracer contours as they are strained by surface geostrophic flow observed by satellite altimetry. The resulting surface diffusivities show considerable spatial variability and are large (2000 m2 s−1) on the equatorward flank of the Antarctic Circumpolar Current and are small (500 m2 s−1) at the jet axis. Regions of high and low effective diffusivity are shown to be collocated with regions of, respectively, weak and strong isentropic potential vorticity gradients. The maps of diffusivity are used, along with climatological estimates of surface wind stress and air–sea buoyancy flux, to estimate surface meridional residual flows and the relative importance of Eulerian and eddy-induced circulation in the streamwise-averaged dynamics of the Antarctic Circumpolar Current.

2010 ◽  
Vol 23 (19) ◽  
pp. 5332-5343 ◽  
Author(s):  
Paul Spence ◽  
John C. Fyfe ◽  
Alvaro Montenegro ◽  
Andrew J. Weaver

Abstract A global climate model with horizontal resolutions in the ocean ranging from relatively coarse to eddy permitting is used to investigate the resolution dependence of the Southern Ocean response to poleward intensifying winds through the past and present centuries. The higher-resolution simulations show poleward migration of distinct ocean fronts associated with a more highly localized near-surface temperature response than in the lower-resolution simulations. The higher-resolution simulations also show increasing southward eddy heat transport, less high-latitude cooling, and greater sea ice loss than the lower-resolution simulations. For all resolutions, from relatively coarse to eddy permitting, there is poleward migration of the Antarctic Circumpolar Current in the Atlantic and the western half of the Indian basin. Finally, zonal transports associated with the Antarctic Circumpolar Current are shown to be sensitive to resolution, and this is discussed in the context of recent observed change.


2010 ◽  
Vol 40 (7) ◽  
pp. 1501-1519 ◽  
Author(s):  
Raffaele Ferrari ◽  
Maxim Nikurashin

Abstract Geostrophic eddies control the meridional mixing of heat, carbon, and other climatically important tracers in the Southern Ocean. The rate of eddy mixing is typically quantified through an eddy diffusivity. There is an ongoing debate as to whether eddy mixing in enhanced in the core of the Antarctic Circumpolar Current or on its flanks. A simple expression is derived that predicts the rate of eddy mixing, that is, the eddy diffusivity, as a function of eddy and mean current statistics. This novel expression predicts suppression of the cross-jet eddy diffusivity in the core of the Antarctic Circumpolar Current, despite enhanced values of eddy kinetic energy. The expression is qualitatively and quantitatively validated by independent estimates of eddy mixing from altimetry observations. This work suggests that the meridional eddy diffusivity across the Antarctic Circumpolar Current is weaker than presently assumed because of the suppression of eddy mixing by the strong zonal current.


2020 ◽  
Vol 50 (9) ◽  
pp. 2621-2648
Author(s):  
Geoffrey J. Stanley ◽  
Timothy E. Dowling ◽  
Mary E. Bradley ◽  
David P. Marshall

AbstractWe investigate the relationship between Ertel potential vorticity Q and Bernoulli potential B on orthobaric density surfaces in the Antarctic Circumpolar Current (ACC), using the Southern Ocean State Estimate. Similar to the extratropical atmospheres of Earth and Mars, Q and B correlate in the ACC in a function-like manner with modest scatter. Below the near-surface, the underlying function relating Q and B appears to be nearly linear. Nondimensionalizing its slope yields “Ma,” a “Mach” number for long Rossby waves, the ratio of the local flow speed to the intrinsic long Rossby wave speed. We empirically estimate the latter using established and novel techniques that yield qualitatively consistent results. Previous work related “Ma” to the degree of homogeneity of Q and to Arnol’d’s shear stability criteria. Estimates of “Ma” for the whole ACC are notably positive, implying inhomogeneous Q, on all circumpolar buoyancy surfaces studied. Upper layers generally exhibit “Ma” slightly less than unity, suggesting that shear instability may operate within these layers. Deep layers exhibit “Ma” greater than unity, implying stability. On surfaces shallower than 1000 m just north of the ACC, the Q versus B slope varies strongly on subannual and interannual time scales, but “Ma” hovers near unity. We also study spatial variability: the ACC is speckled with hundreds of small-scale features with “Ma” near unity, whereas away from the ACC “Ma” is more commonly negative or above unity, both corresponding to stability. Maps of the time-mean “Ma” show stable regions occupy most of the Southern Ocean, except for several topographically controlled hotspots where “Ma” is always near unity.


2019 ◽  
Vol 49 (12) ◽  
pp. 3221-3244 ◽  
Author(s):  
Ryan D. Patmore ◽  
Paul R. Holland ◽  
David R. Munday ◽  
Alberto C. Naveira Garabato ◽  
David P. Stevens ◽  
...  

AbstractIn the Southern Ocean the Antarctic Circumpolar Current is significantly steered by large topographic features, and subpolar gyres form in their lee. The geometry of topographic features in the Southern Ocean is highly variable, but the influence of this variation on the large-scale flow is poorly understood. Using idealized barotropic simulations of a zonal channel with a meridional ridge, it is found that the ridge geometry is important for determining the net zonal volume transport. A relationship is observed between ridge width and volume transport that is determined by the form stress generated by the ridge. Gyre formation is also highly reliant on the ridge geometry. A steep ridge allows gyres to form within regions of unblocked geostrophic (f/H) contours, with an increase in gyre strength as the ridge width is reduced. These relationships among ridge width, gyre strength, and net zonal volume transport emerge to simultaneously satisfy the conservation of momentum and vorticity.


2007 ◽  
Vol 37 (5) ◽  
pp. 1394-1412 ◽  
Author(s):  
Serguei Sokolov ◽  
Stephen R. Rintoul

Abstract Maps of the gradient of sea surface height (SSH) and sea surface temperature (SST) reveal that the Antarctic Circumpolar Current (ACC) consists of multiple jets or frontal filaments. The braided and patchy nature of the gradient fields seems at odds with the traditional view, derived from hydrographic sections, that the ACC is made up of three continuous circumpolar fronts. By applying a nonlinear fitting procedure to 638 weekly maps of SSH gradient (∇SSH), it is shown that the distribution of maxima in ∇SSH (i.e., fronts) is strongly peaked at particular values of absolute SSH (i.e., streamlines). The association between the jets and particular streamlines persists despite strong topographic and eddy–mean flow interactions, which cause the jets to merge, diverge, and fluctuate in intensity along their path. The SSH values corresponding to each frontal branch are nearly constant over the sector of the Southern Ocean between 100°E and 180°. The front positions inferred from SSH agree closely with positions inferred from hydrographic sections using traditional water mass criteria. Recognition of the multiple branches of the Southern Ocean fronts helps to reconcile differences between front locations determined by previous studies. Weekly maps of SSH are used to characterize the structure and variability of the ACC fronts and filaments. The path, width, and intensity of the frontal branches are influenced strongly by the bathymetry. The “meander envelopes” of the fronts are narrow on the northern slope of topographic ridges, where the sloping topography reinforces the β effect, and broader over abyssal plains.


2013 ◽  
Vol 43 (3) ◽  
pp. 583-601 ◽  
Author(s):  
H. Sekma ◽  
Y.-H. Park ◽  
F. Vivier

Abstract The major mechanisms of the oceanic poleward heat flux in the Southern Ocean are still in debate. The long-standing belief stipulates that the poleward heat flux across the Antarctic Circumpolar Current (ACC) is mainly due to mesoscale transient eddies and the cross-stream heat flux by time-mean flow is insignificant. This belief has recently been challenged by several numerical modeling studies, which stress the importance of mean flow for the meridional heat flux in the Southern Ocean. Here, this study analyzes moored current meter data obtained recently in the Fawn Trough, Kerguelen Plateau, to estimate the cross-stream heat flux caused by the time-mean flow and transient eddies. It is shown that the poleward eddy heat flux in this southern part of the ACC is negligible, while that from the mean flow is overwhelming by two orders of magnitude. This is due to the unusual anticlockwise turning of currents with decreasing depth, which is associated with significant bottom upwelling engendered by strong bottom currents flowing over the sloping topography of the trough. The circumpolar implications of these local observations are discussed in terms of the depth-integrated linear vorticity budget, which suggests that the six topographic features along the southern flank of the ACC equivalent to the Fawn Trough case would yield sufficient poleward heat flux to balance the oceanic heat loss in the subpolar region. As eddy activity on the southern flank of the ACC is too weak to transport sufficient heat poleward, the nonequivalent barotropic structure of the mean flow in several topographically constricted passages should accomplish the required task.


Sign in / Sign up

Export Citation Format

Share Document