scholarly journals Satellite and VIZ–Radiosonde Intercomparisons for Diagnosis of Nonclimatic Influences

2006 ◽  
Vol 23 (9) ◽  
pp. 1181-1194 ◽  
Author(s):  
John R. Christy ◽  
William B. Norris

Abstract Radiosonde datasets of temperature often suffer from discontinuities due to changes in instrumentation, location, observing practices, and algorithms. To identify temporal discontinuities that affect the VIZ/Sippican family of radiosondes, the 1979–2004 time series of a composite of 31 VIZ stations are compared to composites of collocated values of layer temperatures from two microwave sounding unit datasets—the University of Alabama in Huntsville (UAH) and Remote Sensing Systems (RSS). Discontinuities in the radiosonde time series relative to the two satellite datasets were detected with high significance and with similar magnitudes; however, some instances occurred where only one satellite dataset differed from the radiosondes. For the products known as lower troposphere (LT; surface–300 hPa) and midtroposphere (MT; surface–75-hPa layer), significant discontinuities relative to both satellite datasets were found—two cases for LT and four for MT. These are likely associated with changes in the radiosonde system. Three apparent radiosonde discontinuities were also determined for the lower-stratospheric product (LS; 150–15 hPa). Because they cannot be definitely traced to changes in the radiosonde system, they could be the result of common errors in the satellite products. When adjustments are applied to the radiosondes based independently on each satellite dataset, 26-yr trends of UAH (RSS) are consistent with the radiosondes for LT, MT, and LS at the level of ±0.06, ±0.04, and ±0.07 (±0.12, ±0.10, and ±0.10) K decade−1. Also, simple statistical retrievals based on radiosonde-derived relationships of LT, MT, and LS indicate a higher level of consistency with UAH products than with those of RSS.

2009 ◽  
Vol 26 (3) ◽  
pp. 508-522 ◽  
Author(s):  
John R. Christy ◽  
William B. Norris

Abstract The temperature records of 28 Australian radiosonde stations were compared with the bulk-layer temperatures of three satellite products of The University of Alabama in Huntsville (UAH) and Remote Sensing Systems (RSS) for the period 1979–2006. The purpose was to use the satellite data as “reference truth” to quantify the effect of changes in station equipment, software, and operations on the reported upper air temperatures and resulting trends. The products are lower troposphere (LT), midtroposphere (MT), and lower stratosphere (LS). Four periods of significant shifts in temperatures were found in the radiosondes relative to both satellite datasets. In the first two shifts—around 1982/83 and 1987/88—the radiosondes experienced an accumulated LT and MT warming shift of 0.5 K on average. These shifts coincided with equipment changes. If unadjusted for these shifts, the radiosondes report spurious tropospheric warming of almost 0.2 K decade−1. For LS in the first period, there is relative warming but in the second, cooling. If unadjusted, the radiosondes overstate LS cooling by about −0.15 K decade−1. The third (early 1990s) and fourth (1998 LT and MT and 2002 LS) shifts are less robustly connected to changes in the radiosondes. Errors in the construction methodology of the satellite products likely account for at least part of the discrepancies but cannot be attributed with confidence to a specific cause. Having opposite signs in the two periods, the last two discrepancies tend to cancel each other. The net effect of these last two shifts on the overall LT and MT trends of ±0.03 K decade−1 is small.


2012 ◽  
Vol 29 (5) ◽  
pp. 646-652 ◽  
Author(s):  
Stephen Po-Chedley ◽  
Qiang Fu

Abstract The University of Alabama at Huntsville (UAH), Remote Sensing Systems (RSS), and the National Oceanic and Atmospheric Administration (NOAA) have constructed long-term temperature records for deep atmospheric layers using satellite Microwave Sounding Unit (MSU) and Advanced Microwave Sounding Unit (AMSU) observations. However, these groups disagree on the magnitude of global temperature trends since 1979, including the trend for the midtropospheric layer (TMT). This study evaluates the selection of the MSU TMT warm target factor for the NOAA-9 satellite using five homogenized radiosonde products as references. The analysis reveals that the UAH TMT product has a positive bias of 0.051 ± 0.031 in the warm target factor that artificially reduces the global TMT trend by 0.042 K decade−1 for 1979–2009. Accounting for this bias increases the global UAH TMT trend from 0.038 to 0.080 K decade−1, effectively eliminating the trend difference between UAH and RSS and decreasing the trend difference between UAH and NOAA by 47%. This warm target factor bias directly affects the UAH lower tropospheric (TLT) product and tropospheric temperature trends derived from a combination of TMT and lower stratospheric (TLS) channels.


2017 ◽  
Vol 34 (1) ◽  
pp. 225-232
Author(s):  
R. Eric Swanson

AbstractSpencer and Christy of the University of Alabama in Huntsville (UAH) recently introduced a new method to process MSU/AMSU satellite brightness temperature data with their version 6 (v6) data. A comparison of UAH v6 north polar lower stratospheric (TLS) data with that from Remote Sensing Systems (RSS) is presented, indicating a possible bias between 1986 and 1988. Comparing UAH and NOAA Center for Satellite Applications and Research (NOAA) TLS data produces a similar result. An additional analysis utilizing midtropospheric (TMT) data also found a similar bias. Comparing the NOAA TMT data for the May 2016 release against UAH and RSS TMT evidenced another excursion, dated at the middle of 2005, that was corrected in later releases. These comparisons reinforce the concerns expressed by other analysts regarding the merging procedure for UAH v6, repeating similar concerns regarding the earlier UAH v5 products. Any biases in the UAH, RSS, or STAR products would impact the trends calculated for these products and could explain the differences between these trends. Biases in the UAH series would also impact the UAH TLTv6 lower-troposphere product, which is a linear combination of the UAH TMT, tropopause temperature (TTP), and TLS series.


2013 ◽  
Vol 30 (5) ◽  
pp. 1006-1013 ◽  
Author(s):  
John R. Christy ◽  
Roy W. Spencer

Abstract Po-Chedley and Fu investigated the difference in the magnitude of global temperature trends generated from the Microwave Sounding Unit (MSU) for the midtroposphere (TMT, surface to about 75 hPa) between the University of Alabama in Huntsville (UAH) and Remote Sensing Systems (RSS). Their approach was to examine the magnitude of a noise-reduction coefficient of one short-lived satellite, NOAA-9, which differed from UAH and RSS. Using radiosonde comparisons over a 2-yr period, they calculated an adjustment to the UAH coefficient that, when applied to the UAH data, increased the UAH global TMT trend for 1979–2009 by +0.042 K decade−1, which then happens to agree with RSS’s TMT trend. In studying their analysis, the authors demonstrate 1) the adjustment calculated using radiosondes is inconclusive when errors are accounted for; 2) the adjustment was applied in a manner inconsistent with the UAH satellite merging strategy, creating a larger change than would be generated had the actual UAH methodology been followed; and 3) that trends of a similar product that uses the same UAH coefficient are essentially identical to UAH and RSS. Based on the authors’ previous analysis and additional work here, UAH will continue using the NOAA-9 noise-reduction coefficient, as is, for version 5.4 and the follow-on version 5.5.


2008 ◽  
Vol 26 (9) ◽  
pp. 2597-2612 ◽  
Author(s):  
C. Gaffard ◽  
J. Nash ◽  
E. Walker ◽  
T. J. Hewison ◽  
J. Jones ◽  
...  

Abstract. Ground based remote sensing systems for future observation operations will allow continuous monitoring of the lower troposphere at temporal resolutions much better than every 30 min. Observations which may be considered spurious from an individual instrument can be validated or eliminated when considered in conjunction with measurements from other instruments observing at the same location. Thus, improved quality control of atmospheric profiles from microwave radiometers and wind profilers should be sought by considering the measurements from different systems together rather than individually. In future test bed deployments for future operational observing systems, this should be aided by observations from laser ceilometers and cloud radars. Observations of changes in atmospheric profiles at high temporal resolution in the lower troposphere are presented from a 12 channel microwave radiometer and 1290 MHz UHF wind profiler deployed in southern England during the CSIP field experiment in July/August 2005. The observations chosen were from days when thunderstorms occurred in southern England. Rapid changes near the surface in dry layers are considered, both when rain/hail may be falling from above and where the dry air is associated with cold pools behind organised thunderstorms. Also, short term variations in atmospheric profiles and vertical stability are presented on a day with occasional low cloud, when thunderstorms triggered 50 km down wind of the observing site Improved quality control of the individual remote sensing systems need to be implemented, examining the basic quality of the underlying observations as well as the final outputs, and so for instance eliminating ground clutter as far as possible from the basic Doppler spectra measurements of the wind profiler. In this study, this was performed manually. The potential of incorporating these types of instruments in future upper air observational networks leads to the challenge to improve the observing systems and also to exploit measurements at high temporal resolution in numerical weather prediction. These examples are intended to inform potential operational users of the changes in atmospheric structure that can be observed with the new types of observing system.


2015 ◽  
Vol 28 (6) ◽  
pp. 2274-2290 ◽  
Author(s):  
Stephen Po-Chedley ◽  
Tyler J. Thorsen ◽  
Qiang Fu

Abstract Independent research teams have constructed long-term tropical time series of the temperature of the middle troposphere (TMT) using satellite Microwave Sounding Unit (MSU) and Advanced MSU (AMSU) measurements. Despite careful efforts to homogenize the MSU/AMSU measurements, tropical TMT trends beginning in 1979 disagree by more than a factor of 3. Previous studies suggest that the discrepancy in tropical TMT trends is caused by differences in both the NOAA-9 warm target factor and diurnal drift corrections. This work introduces a new observationally based method for removing biases related to satellite diurnal drift. Over land, the derived diurnal correction is similar to a general circulation model (GCM) diurnal cycle. Over ocean, the diurnal corrections have a negligible effect on TMT trends, indicating that oceanic biases are small. It is demonstrated that this method is effective at removing biases between coorbiting satellites and biases between nodes of individual satellites. Using a homogenized TMT dataset, the ratio of tropical tropospheric temperature trends relative to surface temperature trends is in accord with the ratio from GCMs. It is shown that bias corrections for diurnal drift based on a GCM produce tropical trends very similar to those from the observationally based correction, with a trend difference smaller than 0.02 K decade−1. Differences between various TMT datasets are explored further. Large differences in tropical TMT trends between this work and that of the University of Alabama in Huntsville (UAH) are attributed to differences in the treatment of the NOAA-9 target factor and the diurnal cycle correction.


2009 ◽  
Vol 26 (8) ◽  
pp. 1435-1455 ◽  
Author(s):  
Masami Sakamoto ◽  
John R. Christy

Abstract A Japanese long-term reanalysis (JRA-25) was completed in 2006 utilizing the comprehensive set of observations from the 40-yr ECMWF Re-Analysis (ERA-40). JRA-25 and ERA-40 adopted the same type of assimilation systems: 3DVAR with direct use of satellite sounding radiances. Long-term upper-air thermal tendencies in both reanalyses are examined and compared with the observational deep-layer temperatures of the University of Alabama in Huntsville (UAH) and Remote Sensing Systems (RSS). The upper-air temperature tendencies in the reanalyses are significantly different from those of UAH and RSS, and they appear to be influenced by the way the observations of the Television and Infrared Observation Satellite (TIROS) Operational Vertical Sounder (TOVS) are used. This study focuses on documenting problems in TOVS assimilation, especially problems in bias corrections used in the reanalyses. Referring to quantitative results in an examination of biases between the reanalyses and raw TOVS observations, this study identifies (i) spurious thermal tendencies derived from transitions in TOVS and in the reanalysis calculation streams, (ii) an excessive enhancement of the tropical water cycle in ERA-40, and (iii) an excessive cooling trend and unstable behavior in the stratospheric temperature in JRA-25. The results of this study suggest that any inconsistencies in TOVS usage can lead to serious inconsistencies in the reanalyses. Therefore, time-consuming efforts to obtain reliable observational information from TOVS are necessary for further progress in reanalyses.


1993 ◽  
Vol 1993 (1) ◽  
pp. 525-529 ◽  
Author(s):  
Alberto L. Geraci ◽  
Francesco Landolina ◽  
Luca Pantani ◽  
Giovanna Cecchi

ABSTRACT A remote sensing application for the control of oil pollution and water quality was developed by the National Council of Research at Florence, and the University of Catania, both in Italy. The application is based on the simultaneous use of active and passive remote sensing systems (lidar and flir systems) from a helicopter. Water pollution characteristics were determined with the lidar system, in polluted areas of water detected, on a larger scale, by the flir system. Pollution characteristics detected included type of pollutant, type of oil, and oil thickness. The experiment, named LIRA, was carried out using an Italian Navy helicopter over sea areas around Sicily having a high risk of pollution. The results proved the effectiveness and usefulness of the techniques proposed.


2009 ◽  
Vol 26 (6) ◽  
pp. 1040-1056 ◽  
Author(s):  
Carl A. Mears ◽  
Frank J. Wentz

Abstract Measurements made by microwave sounding instruments provide a multidecadal record of atmospheric temperature change. Measurements began in late 1978 with the launch of the first Microwave Sounding Unit (MSU) and continue to the present. In 1998, the first of the follow-on series of instruments—the Advanced Microwave Sounding Units (AMSUs)—was launched. To continue the atmospheric temperature record past 2004, when measurements from the last MSU instrument degraded in quality, AMSU and MSU measurements must be intercalibrated and combined to extend the atmospheric temperature data records. Calibration methods are described for three MSU–AMSU channels that measure the temperature of thick layers of the atmosphere centered in the middle troposphere, near the tropopause, and in the lower stratosphere. Some features of the resulting datasets are briefly summarized.


1995 ◽  
Author(s):  
S. D. Lockwood ◽  
D. Hardin ◽  
G. J. Miller ◽  
C. Meesuk ◽  
P. R. Straus

Sign in / Sign up

Export Citation Format

Share Document