Construction of the Remote Sensing Systems V3.2 Atmospheric Temperature Records from the MSU and AMSU Microwave Sounders

2009 ◽  
Vol 26 (6) ◽  
pp. 1040-1056 ◽  
Author(s):  
Carl A. Mears ◽  
Frank J. Wentz

Abstract Measurements made by microwave sounding instruments provide a multidecadal record of atmospheric temperature change. Measurements began in late 1978 with the launch of the first Microwave Sounding Unit (MSU) and continue to the present. In 1998, the first of the follow-on series of instruments—the Advanced Microwave Sounding Units (AMSUs)—was launched. To continue the atmospheric temperature record past 2004, when measurements from the last MSU instrument degraded in quality, AMSU and MSU measurements must be intercalibrated and combined to extend the atmospheric temperature data records. Calibration methods are described for three MSU–AMSU channels that measure the temperature of thick layers of the atmosphere centered in the middle troposphere, near the tropopause, and in the lower stratosphere. Some features of the resulting datasets are briefly summarized.

2012 ◽  
Vol 29 (5) ◽  
pp. 646-652 ◽  
Author(s):  
Stephen Po-Chedley ◽  
Qiang Fu

Abstract The University of Alabama at Huntsville (UAH), Remote Sensing Systems (RSS), and the National Oceanic and Atmospheric Administration (NOAA) have constructed long-term temperature records for deep atmospheric layers using satellite Microwave Sounding Unit (MSU) and Advanced Microwave Sounding Unit (AMSU) observations. However, these groups disagree on the magnitude of global temperature trends since 1979, including the trend for the midtropospheric layer (TMT). This study evaluates the selection of the MSU TMT warm target factor for the NOAA-9 satellite using five homogenized radiosonde products as references. The analysis reveals that the UAH TMT product has a positive bias of 0.051 ± 0.031 in the warm target factor that artificially reduces the global TMT trend by 0.042 K decade−1 for 1979–2009. Accounting for this bias increases the global UAH TMT trend from 0.038 to 0.080 K decade−1, effectively eliminating the trend difference between UAH and RSS and decreasing the trend difference between UAH and NOAA by 47%. This warm target factor bias directly affects the UAH lower tropospheric (TLT) product and tropospheric temperature trends derived from a combination of TMT and lower stratospheric (TLS) channels.


2009 ◽  
Vol 26 (8) ◽  
pp. 1493-1509 ◽  
Author(s):  
Carl A. Mears ◽  
Frank J. Wentz

Abstract Measurements made by microwave sounding instruments provide a multidecadal record of atmospheric temperature in several thick atmospheric layers. Satellite measurements began in late 1978 with the launch of the first Microwave Sounding Unit (MSU) and have continued to the present via the use of measurements from the follow-on series of instruments, the Advanced Microwave Sounding Unit (AMSU). The weighting function for MSU channel 2 is centered in the middle troposphere but contains significant weight in the lower stratosphere. To obtain an estimate of tropospheric temperature change that is free from stratospheric effects, a weighted average of MSU channel 2 measurements made at different local zenith angles is used to extrapolate the measurements toward the surface, which results in a measurement of changes in the lower troposphere. In this paper, a description is provided of methods that were used to extend the MSU method to the newer AMSU channel 5 measurements and to intercalibrate the results from the different types of satellites. Then, satellite measurements are compared to results from homogenized radiosonde datasets. The results are found to be in excellent agreement with the radiosonde results in the northern extratropics, where the majority of the radiosonde stations are located.


2009 ◽  
Vol 22 (7) ◽  
pp. 1661-1681 ◽  
Author(s):  
Cheng-Zhi Zou ◽  
Mei Gao ◽  
Mitchell D. Goldberg

Abstract The Microwave Sounding Unit (MSU) onboard the National Oceanic and Atmospheric Administration polar-orbiting satellites measures the atmospheric temperature from the surface to the lower stratosphere under all weather conditions, excluding precipitation. Although designed primarily for monitoring weather processes, the MSU observations have been extensively used for detecting climate trends, and calibration errors are a major source of uncertainty. To reduce this uncertainty, an intercalibration method based on the simultaneous nadir overpass (SNO) matchups for the MSU instruments on satellites NOAA-10, -11, -12, and -14 was developed. Due to orbital geometry, the SNO matchups are confined to the polar regions, where the brightness temperature range is slightly smaller than the global range. Nevertheless, the resulting calibration coefficients are applied globally to the entire life cycle of an MSU satellite. Such intercalibration reduces intersatellite biases by an order of magnitude compared to prelaunch calibration and, thus, results in well-merged time series for the MSU channels 2, 3, and 4, which respectively represent the deep layer temperature of the midtroposphere (T2), tropopause (T3), and lower stratosphere (T4). Focusing on the global atmosphere over ocean surfaces, trends for the SNO-calibrated T2, T3, and T4 are, respectively, 0.21 ± 0.07, 0.08 ± 0.08, and −0.38 ± 0.27 K decade−1 from 1987 to 2006. These trends are independent of the number of limb-corrected footprints used in the dataset, and trend differences are marginal for varying bias correction techniques for merging the overlapping satellites on top of the SNO calibration. The spatial pattern of the trends reveals the tropical midtroposphere to have warmed at a rate of 0.28 ± 0.19 K decade−1, while the Arctic atmosphere warmed 2 to 3 times faster than the global average. The troposphere and lower stratosphere, however, cooled across the southern Indian and Atlantic Oceans adjacent to the Antarctic continent. To remove the stratospheric cooling effect in T2, channel trends from T2 and T3 (T23) and T2 and T4 (T24) were combined. The trend patterns for T23 and T24 are in close agreement, suggesting internal consistencies for the trend patterns of the three channels.


2006 ◽  
Vol 23 (9) ◽  
pp. 1181-1194 ◽  
Author(s):  
John R. Christy ◽  
William B. Norris

Abstract Radiosonde datasets of temperature often suffer from discontinuities due to changes in instrumentation, location, observing practices, and algorithms. To identify temporal discontinuities that affect the VIZ/Sippican family of radiosondes, the 1979–2004 time series of a composite of 31 VIZ stations are compared to composites of collocated values of layer temperatures from two microwave sounding unit datasets—the University of Alabama in Huntsville (UAH) and Remote Sensing Systems (RSS). Discontinuities in the radiosonde time series relative to the two satellite datasets were detected with high significance and with similar magnitudes; however, some instances occurred where only one satellite dataset differed from the radiosondes. For the products known as lower troposphere (LT; surface–300 hPa) and midtroposphere (MT; surface–75-hPa layer), significant discontinuities relative to both satellite datasets were found—two cases for LT and four for MT. These are likely associated with changes in the radiosonde system. Three apparent radiosonde discontinuities were also determined for the lower-stratospheric product (LS; 150–15 hPa). Because they cannot be definitely traced to changes in the radiosonde system, they could be the result of common errors in the satellite products. When adjustments are applied to the radiosondes based independently on each satellite dataset, 26-yr trends of UAH (RSS) are consistent with the radiosondes for LT, MT, and LS at the level of ±0.06, ±0.04, and ±0.07 (±0.12, ±0.10, and ±0.10) K decade−1. Also, simple statistical retrievals based on radiosonde-derived relationships of LT, MT, and LS indicate a higher level of consistency with UAH products than with those of RSS.


2013 ◽  
Vol 30 (5) ◽  
pp. 1006-1013 ◽  
Author(s):  
John R. Christy ◽  
Roy W. Spencer

Abstract Po-Chedley and Fu investigated the difference in the magnitude of global temperature trends generated from the Microwave Sounding Unit (MSU) for the midtroposphere (TMT, surface to about 75 hPa) between the University of Alabama in Huntsville (UAH) and Remote Sensing Systems (RSS). Their approach was to examine the magnitude of a noise-reduction coefficient of one short-lived satellite, NOAA-9, which differed from UAH and RSS. Using radiosonde comparisons over a 2-yr period, they calculated an adjustment to the UAH coefficient that, when applied to the UAH data, increased the UAH global TMT trend for 1979–2009 by +0.042 K decade−1, which then happens to agree with RSS’s TMT trend. In studying their analysis, the authors demonstrate 1) the adjustment calculated using radiosondes is inconclusive when errors are accounted for; 2) the adjustment was applied in a manner inconsistent with the UAH satellite merging strategy, creating a larger change than would be generated had the actual UAH methodology been followed; and 3) that trends of a similar product that uses the same UAH coefficient are essentially identical to UAH and RSS. Based on the authors’ previous analysis and additional work here, UAH will continue using the NOAA-9 noise-reduction coefficient, as is, for version 5.4 and the follow-on version 5.5.


2009 ◽  
Vol 26 (3) ◽  
pp. 508-522 ◽  
Author(s):  
John R. Christy ◽  
William B. Norris

Abstract The temperature records of 28 Australian radiosonde stations were compared with the bulk-layer temperatures of three satellite products of The University of Alabama in Huntsville (UAH) and Remote Sensing Systems (RSS) for the period 1979–2006. The purpose was to use the satellite data as “reference truth” to quantify the effect of changes in station equipment, software, and operations on the reported upper air temperatures and resulting trends. The products are lower troposphere (LT), midtroposphere (MT), and lower stratosphere (LS). Four periods of significant shifts in temperatures were found in the radiosondes relative to both satellite datasets. In the first two shifts—around 1982/83 and 1987/88—the radiosondes experienced an accumulated LT and MT warming shift of 0.5 K on average. These shifts coincided with equipment changes. If unadjusted for these shifts, the radiosondes report spurious tropospheric warming of almost 0.2 K decade−1. For LS in the first period, there is relative warming but in the second, cooling. If unadjusted, the radiosondes overstate LS cooling by about −0.15 K decade−1. The third (early 1990s) and fourth (1998 LT and MT and 2002 LS) shifts are less robustly connected to changes in the radiosondes. Errors in the construction methodology of the satellite products likely account for at least part of the discrepancies but cannot be attributed with confidence to a specific cause. Having opposite signs in the two periods, the last two discrepancies tend to cancel each other. The net effect of these last two shifts on the overall LT and MT trends of ±0.03 K decade−1 is small.


2014 ◽  
Vol 31 (10) ◽  
pp. 2206-2222 ◽  
Author(s):  
Xiaolei Zou ◽  
Fuzhong Weng ◽  
H. Yang

Abstract The measurements from the Microwave Sounding Unit (MSU) and the Advanced Microwave Sounding Unit-A (AMSU-A) on board NOAA polar-orbiting satellites have been extensively utilized for detecting atmospheric temperature trend during the last several decades. After the launch of the Suomi National Polar-orbiting Partnership (Suomi-NPP) satellite on 28 October 2011, MSU and AMSU-A time series will be overlapping with the Advanced Technology Microwave Sounder (ATMS) measurements. While ATMS inherited the central frequency and bandpass from most of AMSU-A sounding channels, its spatial resolution and noise features are, however, distinctly different from those of AMSU. In this study, the Backus–Gilbert method is used to optimally resample the ATMS data to AMSU-A fields of view (FOVs). The differences between the original and resampled ATMS data are demonstrated. By using the simultaneous nadir overpass (SNO) method, ATMS-resampled observations are collocated in space and time with AMSU-A data. The intersensor biases are then derived for each pair of ATMS–AMSU-A channels. It is shown that the brightness temperatures from ATMS now fall well within the AMSU data family after resampling and SNO cross calibration. Thus, the MSU–AMSU time series can be extended into future decades for more climate applications.


2021 ◽  
Vol 13 (16) ◽  
pp. 3148
Author(s):  
Xinlu Xia ◽  
Xiaolei Zou

Microwave temperature sounding observations from polar-orbiting meteorological satellites have been widely used for research on climate trends of atmospheric temperature at different heights around the world. Taking the Amazon rainforest as the target area, this study combined the Microwave Temperature Sounder-2 (MWTS-2) data onboard the Chinese FengYun-3D (FY-3D) satellite with the Advanced Microwave Sounding unit-A (AMSU-A) data onboard the National Oceanic and Atmospheric Administration (NOAA) and the European Meteorological Operational (MetOp) polar-orbiting meteorological satellites (i.e., NOAA-15, −18, −19, MetOp-A, -B). The double difference method was used to estimate and thus eliminate the inter-sensor bias, and a decadal diurnal correction was used to reduce the impact of different local equator crossing times on climate trends. The “no-rain” conditions were determined for AMSU-A data by channels 1 and 15, and for MWTS-2 data by channels 1 and 7. Finally, the decadal linear trends of atmospheric temperature from 1998 to 2020 were obtained after applying the inter-sensor bias calibration and inter-decadal diurnal correction to AMSU-A and MWTS-2 data from NOAA-15, −18, −19; MetOp-A, -B; and FY-3D. A warming trend was found in the AMSU-A window and tropospheric channels (1–9 and 15) and a cooling trend in stratospheric channels (10–14). The warming (cooling) trends of channels 7–9 (10) were relatively small. The warming (cooling) trends of AMSU-A channels 1–6 (14–15) were significantly reduced after the inter-decadal diurnal correction.


2020 ◽  
Vol 12 (18) ◽  
pp. 2988
Author(s):  
Wenze Yang ◽  
Huan Meng ◽  
Ralph R. Ferraro ◽  
Yong Chen

More than one decade of observations from the Advanced Microwave Sounding Unit-A (AMSU-A) onboard the polar-orbiting satellites NOAA-15 to NOAA-19 and European Meteorological Operational satellite program-A (MetOp-A) provided global information on atmospheric temperature profiles, water vapor, cloud, precipitation, etc. These observations were primarily intended for weather related prediction and applications, however, in order to meet the requirements for climate application, further reprocessing must be conducted to first eliminate any potential satellites biases. After the geolocation and cross-scan bias corrections were applied to the dataset, follow-on research focused on the comparison amongst AMSU-A window channels (e.g., 23.8, 31.4, 50.3 and 89.0 GHz) from the six different satellites to remove any inter-satellite inconsistency. Inter-satellite differences can arise from many error sources, such as bias drift, sun-heating-induced instrument variability in brightness temperatures, radiance dependent biases due to inaccurate calibration nonlinearity, etc. The Integrated microwave inter-calibration approach (IMICA) approach was adopted in this study for inter-satellite calibration of AMSU-A window channels after the appropriate standard deviation (STD) thresholds were identified to restrict Simultaneous Nadir Overpass (SNO) data for window channels. This was a critical step towards the development of a set of fundamental and thematic climate data records (CDRs) for hydrological and climatological applications. NOAA-15 served as the main reference satellite for this study. For ensuing studies that expand to beyond 2015, however, it is recommended that a different satellite be adopted as the reference due to concerns over potential degradation of NOAA-15 AMSU-A.


Sign in / Sign up

Export Citation Format

Share Document