scholarly journals Comments on “A Bias in the Midtropospheric Channel Warm Target Factor on the NOAA-9 Microwave Sounding Unit”

2013 ◽  
Vol 30 (5) ◽  
pp. 1006-1013 ◽  
Author(s):  
John R. Christy ◽  
Roy W. Spencer

Abstract Po-Chedley and Fu investigated the difference in the magnitude of global temperature trends generated from the Microwave Sounding Unit (MSU) for the midtroposphere (TMT, surface to about 75 hPa) between the University of Alabama in Huntsville (UAH) and Remote Sensing Systems (RSS). Their approach was to examine the magnitude of a noise-reduction coefficient of one short-lived satellite, NOAA-9, which differed from UAH and RSS. Using radiosonde comparisons over a 2-yr period, they calculated an adjustment to the UAH coefficient that, when applied to the UAH data, increased the UAH global TMT trend for 1979–2009 by +0.042 K decade−1, which then happens to agree with RSS’s TMT trend. In studying their analysis, the authors demonstrate 1) the adjustment calculated using radiosondes is inconclusive when errors are accounted for; 2) the adjustment was applied in a manner inconsistent with the UAH satellite merging strategy, creating a larger change than would be generated had the actual UAH methodology been followed; and 3) that trends of a similar product that uses the same UAH coefficient are essentially identical to UAH and RSS. Based on the authors’ previous analysis and additional work here, UAH will continue using the NOAA-9 noise-reduction coefficient, as is, for version 5.4 and the follow-on version 5.5.

2012 ◽  
Vol 29 (5) ◽  
pp. 646-652 ◽  
Author(s):  
Stephen Po-Chedley ◽  
Qiang Fu

Abstract The University of Alabama at Huntsville (UAH), Remote Sensing Systems (RSS), and the National Oceanic and Atmospheric Administration (NOAA) have constructed long-term temperature records for deep atmospheric layers using satellite Microwave Sounding Unit (MSU) and Advanced Microwave Sounding Unit (AMSU) observations. However, these groups disagree on the magnitude of global temperature trends since 1979, including the trend for the midtropospheric layer (TMT). This study evaluates the selection of the MSU TMT warm target factor for the NOAA-9 satellite using five homogenized radiosonde products as references. The analysis reveals that the UAH TMT product has a positive bias of 0.051 ± 0.031 in the warm target factor that artificially reduces the global TMT trend by 0.042 K decade−1 for 1979–2009. Accounting for this bias increases the global UAH TMT trend from 0.038 to 0.080 K decade−1, effectively eliminating the trend difference between UAH and RSS and decreasing the trend difference between UAH and NOAA by 47%. This warm target factor bias directly affects the UAH lower tropospheric (TLT) product and tropospheric temperature trends derived from a combination of TMT and lower stratospheric (TLS) channels.


2006 ◽  
Vol 23 (9) ◽  
pp. 1181-1194 ◽  
Author(s):  
John R. Christy ◽  
William B. Norris

Abstract Radiosonde datasets of temperature often suffer from discontinuities due to changes in instrumentation, location, observing practices, and algorithms. To identify temporal discontinuities that affect the VIZ/Sippican family of radiosondes, the 1979–2004 time series of a composite of 31 VIZ stations are compared to composites of collocated values of layer temperatures from two microwave sounding unit datasets—the University of Alabama in Huntsville (UAH) and Remote Sensing Systems (RSS). Discontinuities in the radiosonde time series relative to the two satellite datasets were detected with high significance and with similar magnitudes; however, some instances occurred where only one satellite dataset differed from the radiosondes. For the products known as lower troposphere (LT; surface–300 hPa) and midtroposphere (MT; surface–75-hPa layer), significant discontinuities relative to both satellite datasets were found—two cases for LT and four for MT. These are likely associated with changes in the radiosonde system. Three apparent radiosonde discontinuities were also determined for the lower-stratospheric product (LS; 150–15 hPa). Because they cannot be definitely traced to changes in the radiosonde system, they could be the result of common errors in the satellite products. When adjustments are applied to the radiosondes based independently on each satellite dataset, 26-yr trends of UAH (RSS) are consistent with the radiosondes for LT, MT, and LS at the level of ±0.06, ±0.04, and ±0.07 (±0.12, ±0.10, and ±0.10) K decade−1. Also, simple statistical retrievals based on radiosonde-derived relationships of LT, MT, and LS indicate a higher level of consistency with UAH products than with those of RSS.


2015 ◽  
Vol 28 (6) ◽  
pp. 2274-2290 ◽  
Author(s):  
Stephen Po-Chedley ◽  
Tyler J. Thorsen ◽  
Qiang Fu

Abstract Independent research teams have constructed long-term tropical time series of the temperature of the middle troposphere (TMT) using satellite Microwave Sounding Unit (MSU) and Advanced MSU (AMSU) measurements. Despite careful efforts to homogenize the MSU/AMSU measurements, tropical TMT trends beginning in 1979 disagree by more than a factor of 3. Previous studies suggest that the discrepancy in tropical TMT trends is caused by differences in both the NOAA-9 warm target factor and diurnal drift corrections. This work introduces a new observationally based method for removing biases related to satellite diurnal drift. Over land, the derived diurnal correction is similar to a general circulation model (GCM) diurnal cycle. Over ocean, the diurnal corrections have a negligible effect on TMT trends, indicating that oceanic biases are small. It is demonstrated that this method is effective at removing biases between coorbiting satellites and biases between nodes of individual satellites. Using a homogenized TMT dataset, the ratio of tropical tropospheric temperature trends relative to surface temperature trends is in accord with the ratio from GCMs. It is shown that bias corrections for diurnal drift based on a GCM produce tropical trends very similar to those from the observationally based correction, with a trend difference smaller than 0.02 K decade−1. Differences between various TMT datasets are explored further. Large differences in tropical TMT trends between this work and that of the University of Alabama in Huntsville (UAH) are attributed to differences in the treatment of the NOAA-9 target factor and the diurnal cycle correction.


2009 ◽  
Vol 26 (6) ◽  
pp. 1040-1056 ◽  
Author(s):  
Carl A. Mears ◽  
Frank J. Wentz

Abstract Measurements made by microwave sounding instruments provide a multidecadal record of atmospheric temperature change. Measurements began in late 1978 with the launch of the first Microwave Sounding Unit (MSU) and continue to the present. In 1998, the first of the follow-on series of instruments—the Advanced Microwave Sounding Units (AMSUs)—was launched. To continue the atmospheric temperature record past 2004, when measurements from the last MSU instrument degraded in quality, AMSU and MSU measurements must be intercalibrated and combined to extend the atmospheric temperature data records. Calibration methods are described for three MSU–AMSU channels that measure the temperature of thick layers of the atmosphere centered in the middle troposphere, near the tropopause, and in the lower stratosphere. Some features of the resulting datasets are briefly summarized.


2018 ◽  
Vol 146 (12) ◽  
pp. 3949-3976 ◽  
Author(s):  
Herschel L. Mitchell ◽  
P. L. Houtekamer ◽  
Sylvain Heilliette

Abstract A column EnKF, based on the Canadian global EnKF and using the RTTOV radiative transfer (RT) model, is employed to investigate issues relating to the EnKF assimilation of Advanced Microwave Sounding Unit-A (AMSU-A) radiance measurements. Experiments are performed with large and small ensembles, with and without localization. Three different descriptions of background temperature error are considered: 1) using analytical vertical modes and hypothetical spectra, 2) using the vertical modes and spectrum of a covariance matrix obtained from the global EnKF after 2 weeks of cycling, and 3) using the vertical modes and spectrum of the static background error covariance matrix employed to initiate a global data assimilation cycle. It is found that the EnKF performs well in some of the experiments with background error description 1, and yields modest error reductions with background error description 3. However, the EnKF is virtually unable to reduce the background error (even when using a large ensemble) with background error description 2. To analyze these results, the different background error descriptions are viewed through the prism of the RT model by comparing the trace of the matrix , where is the RT model and is the background error covariance matrix. Indeed, this comparison is found to explain the difference in the results obtained, which relates to the degree to which deep modes are, or are not, present in the different background error covariances. The results suggest that, after 2 weeks of cycling, the global EnKF has virtually eliminated all background error structures that can be “seen” by the AMSU-A radiances.


2021 ◽  
Vol 39 (2) ◽  
pp. 327-339
Author(s):  
Frank T. Huang ◽  
Hans G. Mayr

Abstract. We have derived the behavior of decadal temperature trends over the 24 h of local time, based on zonal averages of SABER data, for the years 2012 to 2014, from 20 to 100 km, within 48∘ of the Equator. Similar results have not been available previously. We find that the temperature trends, based on zonal mean measurements at a fixed local time, can be different from those based on measurements made at a different fixed local time. The trends can vary significantly in local time, even from hour to hour. This agrees with some findings based on nighttime lidar measurements. This knowledge is relevant because the large majority of temperature measurements, especially in the stratosphere, are made by instruments on sun-synchronous operational satellites which measure at only one or two fixed local times, for the duration of their missions. In these cases, the zonal mean trends derived from various satellite data are tied to the specific local times at which each instrument samples the data, and the trends are then also biased by the local time. Consequently, care is needed in comparing trends based on various measurements with each other, unless the data are all measured at the same local time. Similar caution is needed when comparing with models, since the zonal means from 3D models reflect averages over both longitude and the 24 h of local time. Consideration is also needed in merging data from various sources to produce generic, continuous, longer-term records. Diurnal variations of temperature themselves, in the form of thermal tides, are well known and are due to absorption of solar radiation. We find that at least part of the reason that temperature trends are different for different local times is that the amplitudes and phases of the tides themselves follow trends over the same time span of the data. Many of the past efforts have focused on the temperature values with local time when merging data from various sources and on the effect of unintended satellite orbital drifts, which result in drifting local times at which the temperatures are measured. However, the effect of local time on trends has not been well researched. We also derive estimates of trends by simulating the drift of local time due to drifting orbits. Our comparisons with results found by others (Advanced Microwave Sounding Unit, AMSU; lidar) are favorable and informative. They may explain, at least in part, the bridge between results based on daytime AMSU data and nighttime lidar measurements. However, these examples do not form a pattern, and more comparisons and study are needed.


2018 ◽  
Vol 35 (5) ◽  
pp. 1141-1150 ◽  
Author(s):  
Hamid A. Pahlavan ◽  
Qiang Fu ◽  
John M. Wallace

AbstractThe temperature of Earth’s atmosphere has been monitored continuously since late 1978 by the Microwave Sounding Unit (MSU) and the Advanced Microwave Sounding Unit (AMSU) flown on polar-orbiting weather satellites. It is well known that these measurements are affected by the scattering and emission from hydrometeors, including cloud water, precipitation, and ice particles. In this study the hydrometeor effects on MSU/AMSU temperature observations are investigated by comparing satellite-observed temperature of the middle troposphere (TMT) with synthetic TMT constructed using temperature fields from ECMWF Interim [ERA-Interim (ERA-I)]. Precipitation data have been used to estimate how much of the difference between these two TMT fields is due to hydrometeor contamination effects. It is shown that there exists a robust linear proportionality between TMT deficit (i.e., the measured TMT minus the synthetic TMT) and precipitation at individual grid points in monthly mean fields. The linear correlation is even stronger in the annual mean and seasonally varying climatology and also in the spatial pattern of ENSO-related anomalies. The linear regression coefficient obtained in all of these analyses is virtually identical: −0.042 K (mm day−1)−1. The channel that senses lower-tropospheric temperature (TLT) is more sensitive to precipitation than the TMT channel: the regression coefficient is −0.059 K (mm day−1)−1. It is shown that correcting the TMT or TLT monthly anomalies by removing the hydrometeor contamination does not significantly influence estimates of tropical mean temperature trends, but it could affect the pattern of temperature trend over the tropical oceans.


2006 ◽  
Vol 19 (17) ◽  
pp. 4234-4242 ◽  
Author(s):  
Celeste M. Johanson ◽  
Qiang Fu

Abstract Tropospheric temperature trends based on Microwave Sounding Unit (MSU) channel 2 data are susceptible to contamination from strong stratospheric cooling. Recently, Fu et al. devised a method of removing the stratospheric contamination by linearly combining data from MSU channels 2 and 4. In this study the sensitivity of the weights of the two channels in the retrieval algorithm for the tropospheric temperatures to the choice of period of record used in the analysis and to the choice of training dataset is examined. The weights derived using monthly temperature anomalies are within about 10% of those obtained by Fu et al. irrespective of the choice of analysis period or training dataset. The trend errors in the retrieved global-mean tropospheric temperatures tested using two independent radiosonde datasets are less than about 0.01 K decade−1 for all time periods of 25 yr or longer with different starting and ending years during 1958–2004. It is found that the retrievals are more robust if they are interpreted in terms of the layer-mean temperature for the entire troposphere, rather than the mean of the 850–300-hPa layer. Because large spurious jumps remain in the reanalyses, especially prior to 1979, one should be cautious when using them as training datasets and in testing the trend errors.


2006 ◽  
Vol 23 (3) ◽  
pp. 417-423 ◽  
Author(s):  
Roy W. Spencer ◽  
John R. Christy ◽  
William D. Braswell ◽  
William B. Norris

Abstract The problems inherent in the estimation of global tropospheric temperature trends from a combination of near-nadir Microwave Sounding Unit (MSU) channel-2 and -4 data are described. The authors show that insufficient overlap between those two channels’ weighting functions prevents a physical removal of the stratospheric influence on tropospheric channel 2 from the stratospheric channel 4. Instead, correlations between stratospheric and tropospheric temperature fluctuations based upon ancillary (e.g., radiosonde) information can be used to statistically estimate a correction for the stratospheric influence on MSU 2 from MSU 4. Fu et al. developed such a regression relationship from radiosonde data using the 850–300-hPa layer as the target predictand. There are large errors in the resulting fit of the two MSU channels to the tropospheric target layer, so the correlations from the ancillary data must be relied upon to provide a statistical minimization of the resulting errors. Such relationships depend upon the accuracy of the particular training dataset as well as the dataset time period and its global representativeness (i.e., temporal and spatial stationarity of the statistics). It is concluded that near-nadir MSU channels 2 and 4 cannot be combined to provide a tropospheric temperature measure without substantial uncertainty resulting from a necessary dependence on ancillary information regarding the vertical profile of temperature variations, which are, in general, not well known on a global basis.


2003 ◽  
Vol 16 (13) ◽  
pp. 2288-2295 ◽  
Author(s):  
James K. Angell

Abstract A 63-station radiosonde network has been used for many years to estimate temperature variations and trends at the surface and in the 850–300-, 300–100-, and 100–50-mb layers of climate zones, both hemispheres, and the globe, but with little regard for the quality of individual station data. In this paper, nine tropical radiosonde stations in this network are identified as anomalous based on unrepresentatively large standard-error-of-regression values for 300–100-mb trends for the period 1958–2000. In the Tropics the exclusion of the 9 anomalous stations from the 63-station network for 1958–2000 results in a warming of the 300–100-mb layer rather than a cooling, a doubling of the warming of the 850–300-mb layer to a value of 0.13 K decade−1, and a greater warming at 850–300-mb than at the surface. The global changes in trend are smaller, but include a change to the same warming of the surface and the 850–300-mb layer during 1958–2000. The effect of the station exclusions is much less for 1979–2000, suggesting that most of the data problems are before this time. Temperature trends based on the 63-station network are compared with the Microwave Sounding Unit (MSU) and other radiosonde trends, and agreement is better after the exclusion of the anomalous stations. There is consensus that in the Tropics the troposphere has warmed slightly more than the surface during 1958–2000, but that there has been a warming of the surface relative to the troposphere during 1979–2000. Globally, the warming of the surface and the troposphere are essentially the same during 1958–2000, but during 1979–2000 the surface warms more than the troposphere. During the latter period the radiosondes indicate considerably more low-stratospheric cooling in the Tropics than does the MSU.


Sign in / Sign up

Export Citation Format

Share Document