scholarly journals Incremental Analysis Update Implementation into a Sequential Ocean Data Assimilation System

2006 ◽  
Vol 23 (12) ◽  
pp. 1729-1744 ◽  
Author(s):  
Y. Ourmières ◽  
J-M. Brankart ◽  
L. Berline ◽  
P. Brasseur ◽  
J. Verron

Abstract This study deals with the enhancement of a sequential assimilation method applied to an ocean general circulation model (OGCM). A major drawback of sequential assimilation methods is the time discontinuity of the solution resulting from intermittent corrections of the model state. The data analysis step can induce shocks in the model restart phase, causing spurious high-frequency oscillations and data rejection. A method called Incremental Analysis Update (IAU) is now recognized to efficiently tackle these problems. In the present work, an IAU-type method is implemented into an intermittent data assimilation system using a low-rank Kalman filter [Singular Evolutive Extended Kalman (SEEK)] in the case of an OGCM with a 1/3° North Atlantic grid. A 1-yr (1993) experiment has been conducted for different setups in order to evaluate the impact of the IAU scheme. Results from all of the different tests are compared with a specific interest in high-frequency output behaviors and solution consistency. The improvements brought up by the IAU implementation, such as the disappearance of spurious high-frequency oscillations and the time continuity of the solution, are shown. An overall assessment of the impact of this new approach on the assimilated runs is discussed. Advantages and drawbacks of the IAU method are pointed out.

2020 ◽  
Vol 13 (7) ◽  
pp. 3145-3177
Author(s):  
Dai Koshin ◽  
Kaoru Sato ◽  
Kazuyuki Miyazaki ◽  
Shingo Watanabe

Abstract. A data assimilation system with a four-dimensional local ensemble transform Kalman filter (4D-LETKF) is developed to make a new analysis dataset for the atmosphere up to the lower thermosphere using the Japanese Atmospherics General Circulation model for Upper Atmosphere Research. The time period from 10 January to 20 February 2017, when an international radar network observation campaign was performed, is focused on. The model resolution is T42L124, which can resolve phenomena at synoptic and larger scales. A conventional observation dataset provided by the National Centers for Environmental Prediction, PREPBUFR, and satellite temperature data from the Aura Microwave Limb Sounder (MLS) for the stratosphere and mesosphere are assimilated. First, the performance of the forecast model is improved by modifying the vertical profile of the horizontal diffusion coefficient and modifying the source intensity in the non-orographic gravity wave parameterization by comparing it with radar wind observations in the mesosphere. Second, the MLS observational bias is estimated as a function of the month and latitude and removed before the data assimilation. Third, data assimilation parameters, such as the degree of gross error check, localization length, inflation factor, and assimilation window, are optimized based on a series of sensitivity tests. The effect of increasing the ensemble member size is also examined. The obtained global data are evaluated by comparison with the Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2) reanalysis data covering pressure levels up to 0.1 hPa and by the radar mesospheric observations, which are not assimilated.


2019 ◽  
Author(s):  
Dai Koshin ◽  
Kaoru Sato ◽  
Kazuyuki Miyazaki ◽  
Shingo Watanabe

Abstract. A data assimilation system with a four-dimensional local ensemble transform Kalman filter (4D-LETKF) is developed to make a new analysis data for the atmosphere up to the lower thermosphere using the Japanese Atmospherics General Circulation model for Upper Atmosphere Research. The time period from 10 January 2017 to 20 February 2017, when an international radar network observation campaign was performed, is focused on. The model resolution is T42L124 which can resolve phenomena at synoptic and larger scales. A conventional observation dataset provided by National Centers for Environmental Prediction, PREPBUFR, and satellite temperature data from the Aura Microwave Limb Sounder (MLS) for the stratosphere and mesosphere are assimilated. First, the performance of the forecast model is improved by modifying the vertical profile of the horizontal diffusion coefficient and modifying the source intensity in the non-orographic gravity wave parameterization, by comparing it with radar wind observations in the mesosphere. Second, the MLS observational bias is estimated as a function of the month and latitude and removed before the data assimilation. Third, data assimilation parameters, such as the degree of gross error check, localization length, inflation factor, and assimilation window are optimized based on a series of sensitivity tests. The effect of increasing the ensemble member size is also examined. The obtained global data are evaluated by comparison with the Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2) reanalysis data covering pressure levels up to 0.1 hPa and by the radar mesospheric observations which are not assimilated.


2020 ◽  
Author(s):  
Dai Koshin ◽  
Kaoru Sato ◽  
Kazuyuki Miyazaki ◽  
Shingo Watanabe

<p>A data assimilation system with a four-dimensional local ensemble transform Kalman filter (4D-LETKF) is developed to make a new analysis data for the atmosphere up to the lower thermosphere using the Japanese Atmospherics General Circulation model for Upper Atmosphere Research. The time period from 10 January 2017 to 20 February 2017, when an international radar network observation campaign was performed, is focused on. The model resolution is T42L124 which can resolve phenomena at synoptic and larger scales. A conventional observation dataset provided by National Centers for Environmental Prediction, PREPBUFR, and satellite temperature data from the Aura Microwave Limb Sounder (MLS) for the stratosphere and mesosphere are assimilated. First, the performance of the forecast model is improved by modifying the vertical profile of the horizontal diffusion coefficient and modifying the source intensity in the non-orographic gravity wave parameterization, by comparing it with radar wind observations in the mesosphere. Second, the MLS observational bias is estimated as a function of the month and latitude and removed before the data assimilation. Third, data assimilation parameters, such as the degree of gross error check, localization length, inflation factor, and assimilation window are optimized based on a series of sensitivity tests. The effect of increasing the ensemble member size is also examined. The obtained global data are evaluated by comparison with the Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2) reanalysis data covering pressure levels up to 0.1 hPa and by the radar mesospheric observations which are not assimilated.</p>


1990 ◽  
Vol 118 (12) ◽  
pp. 2513-2542 ◽  
Author(s):  
Ross N. Hoffman ◽  
Christopher Grassotti ◽  
Ronald G. Isaacs ◽  
Jean-Francois Louis ◽  
Thomas Nehrkorn ◽  
...  

2010 ◽  
Vol 27 (3) ◽  
pp. 528-546 ◽  
Author(s):  
Robert W. Helber ◽  
Jay F. Shriver ◽  
Charlie N. Barron ◽  
Ole Martin Smedstad

Abstract The impact of the number of satellite altimeters providing sea surface height anomaly (SSHA) information for a data assimilation system is evaluated using two comparison frameworks and two statistical methodologies. The Naval Research Laboratory (NRL) Layered Ocean Model (NLOM) dynamically interpolates satellite SSHA track data measured from space to produce high-resolution (eddy resolving) fields. The Modular Ocean Data Assimilation System (MODAS) uses the NLOM SSHA to produce synthetic three-dimensional fields of temperature and salinity over the global ocean. A series of case studies is defined where NLOM assimilates different combinations of data streams from zero to three altimeters. The resulting NLOM SSHA fields and the MODAS synthetic profiles are evaluated relative to independently observed ocean temperature and salinity profiles for the years 2001–03. The NLOM SSHA values are compared with the difference of the observed dynamic height from the climatological dynamic height. The synthetics are compared with observations using a measure of thermocline depth. Comparisons are done point for point and for 1° radius regions that are linearly fit over 2-month periods. To evaluate the impact of data outliers, statistical evaluations are done with traditional Gaussian statistics and also with robust nonparametric statistics. Significant error reduction is obtained, particularly in high SSHA variability regions, by including at least one altimeter. Given the limitation of these methods, the overall differences between one and three altimeters are significant only in bias. Data outliers increase Gaussian statistical error and error uncertainty compared to the same computations using nonparametric statistical methods.


2005 ◽  
Vol 133 (4) ◽  
pp. 829-843 ◽  
Author(s):  
Milija Zupanski ◽  
Dusanka Zupanski ◽  
Tomislava Vukicevic ◽  
Kenneth Eis ◽  
Thomas Vonder Haar

A new four-dimensional variational data assimilation (4DVAR) system is developed at the Cooperative Institute for Research in the Atmosphere (CIRA)/Colorado State University (CSU). The system is also called the Regional Atmospheric Modeling Data Assimilation System (RAMDAS). In its present form, the 4DVAR system is employing the CSU/Regional Atmospheric Modeling System (RAMS) nonhydrostatic primitive equation model. The Weather Research and Forecasting (WRF) observation operator is used to access the observations, adopted from the WRF three-dimensional variational data assimilation (3DVAR) algorithm. In addition to the initial conditions adjustment, the RAMDAS includes the adjustment of model error (bias) and lateral boundary conditions through an augmented control variable definition. Also, the control variable is defined in terms of the velocity potential and streamfunction instead of the horizontal winds. The RAMDAS is developed after the National Centers for Environmental Prediction (NCEP) Eta 4DVAR system, however with added improvements addressing its use in a research environment. Preliminary results with RAMDAS are presented, focusing on the minimization performance and the impact of vertical correlations in error covariance modeling. A three-dimensional formulation of the background error correlation is introduced and evaluated. The Hessian preconditioning is revisited, and an alternate algebraic formulation is presented. The results indicate a robust minimization performance.


Sign in / Sign up

Export Citation Format

Share Document