Ensemble Kalman Filter Analyses of the 29–30 May 2004 Oklahoma Tornadic Thunderstorm Using One- and Two-Moment Bulk Microphysics Schemes, with Verification against Polarimetric Radar Data

2012 ◽  
Vol 140 (5) ◽  
pp. 1457-1475 ◽  
Author(s):  
Youngsun Jung ◽  
Ming Xue ◽  
Mingjing Tong

Abstract The performance of ensemble Kalman filter (EnKF) analysis is investigated for the tornadic supercell on 29–30 May 2004 in Oklahoma using a dual-moment (DM) bulk microphysics scheme in the Advanced Regional Prediction System (ARPS) model. The comparison of results using single-moment (SM) and DM microphysics schemes evaluates the benefits of using one over the other during storm analysis. Observations from a single operational Weather Surveillance Radar-1988 Doppler (WSR-88D) are assimilated and a polarimetric WSR-88D in Norman, Oklahoma (KOUN), is used to assess the quality of the analysis. Analyzed reflectivity and radial velocity in the SM and DM experiments compare favorably with independent radar observations in general. However, simulated polarimetric signatures obtained from analyses using a DM scheme agree significantly better with polarimetric signatures observed by KOUN in terms of the general structure, location, and intensity of the signatures than those generated from analyses using an SM scheme. These results demonstrate for the first time for a real supercell storm that EnKF data assimilation using a numerical model with an adequate microphysics scheme (i.e., a scheme that predicts at least two moments of the hydrometeor size distributions) is capable of producing polarimetric radar signatures similar to those seen in observations without directly assimilating polarimetric data. In such cases, the polarimetric data also serve as completely independent observations for the verification purposes.

2014 ◽  
Vol 142 (1) ◽  
pp. 141-162 ◽  
Author(s):  
Bryan J. Putnam ◽  
Ming Xue ◽  
Youngsun Jung ◽  
Nathan Snook ◽  
Guifu Zhang

Abstract Doppler radar data are assimilated with an ensemble Kalman Filter (EnKF) in combination with a double-moment (DM) microphysics scheme in order to improve the analysis and forecast of microphysical states and precipitation structures within a mesoscale convective system (MCS) that passed over western Oklahoma on 8–9 May 2007. Reflectivity and radial velocity data from five operational Weather Surveillance Radar-1988 Doppler (WSR-88D) S-band radars as well as four experimental Collaborative and Adaptive Sensing of the Atmosphere (CASA) X-band radars are assimilated over a 1-h period using either single-moment (SM) or DM microphysics schemes within the forecast ensemble. Three-hour deterministic forecasts are initialized from the final ensemble mean analyses using a SM or DM scheme, respectively. Polarimetric radar variables are simulated from the analyses and compared with polarimetric WSR-88D observations for verification. EnKF assimilation of radar data using a multimoment microphysics scheme for an MCS case has not previously been documented in the literature. The use of DM microphysics during data assimilation improves simulated polarimetric variables through differentiation of particle size distributions (PSDs) within the stratiform and convective regions. The DM forecast initiated from the DM analysis shows significant qualitative improvement over the assimilation and forecast using SM microphysics in terms of the location and structure of the MCS precipitation. Quantitative precipitation forecasting skills are also improved in the DM forecast. Better handling of the PSDs by the DM scheme is believed to be responsible for the improved prediction of the surface cold pool, a stronger leading convective line, and improved areal extent of stratiform precipitation.


2019 ◽  
Vol 147 (7) ◽  
pp. 2511-2533 ◽  
Author(s):  
Bryan Putnam ◽  
Ming Xue ◽  
Youngsun Jung ◽  
Nathan Snook ◽  
Guifu Zhang

Abstract Real polarimetric radar observations are directly assimilated for the first time using the ensemble Kalman filter (EnKF) for a supercell case from 20 May 2013 in Oklahoma. A double-moment microphysics scheme and advanced polarimetric radar observation operators are used together to estimate the model states. Lookup tables for the observation operators are developed based on T-matrix scattering amplitudes for all hydrometeor categories, which improve upon previous curved-fitted approximations of T-matrix scattering amplitudes or the Rayleigh approximation. Two experiments are conducted: one assimilates reflectivity (Z) and radial velocity (Vr) (EXPZ), and one assimilates in addition differential reflectivity (ZDR) below the observed melting level at ~2-km height (EXPZZDR). In the EnKF analyses, EXPZZDR exhibits a ZDR arc that better matches observations than EXPZ. EXPZZDR also has higher ZDR above 2 km, consistent with the observed ZDR column. Additionally, EXPZZDR has an improved estimate of the model microphysical states. Specifically, the rain mean mass diameter (Dnr) in EXPZZDR is higher in the ZDR arc region and the total rain number concentration (Ntr) is lower downshear in the forward flank than EXPZ when compared to values retrieved from the polarimetric observations. Finally, a negative gradient of hail mean mass diameter (Dnh) is found in the right-forward flank of the EXPZZDR analysis, which supports previous findings indicating that size sorting of hail, as opposed to rain, has a more significant impact on low-level polarimetric signatures. This paper represents a proof-of-concept study demonstrating the value of assimilating polarimetric radar data in improving the analysis of features and states related to microphysics in supercell storms.


2011 ◽  
Vol 139 (11) ◽  
pp. 3446-3468 ◽  
Author(s):  
Nathan Snook ◽  
Ming Xue ◽  
Youngsun Jung

Abstract One of the goals of the National Science Foundation Engineering Research Center (ERC) for Collaborative Adaptive Sensing of the Atmosphere (CASA) is to improve storm-scale numerical weather prediction (NWP) by collecting data with a dense X-band radar network that provides high-resolution low-level coverage, and by assimilating such data into NWP models. During the first spring storm season after the deployment of four radars in the CASA Integrated Project-1 (IP-1) network in southwest Oklahoma, a tornadic mesoscale convective system (MCS) was captured by CASA and surrounding Weather Surveillance Radars-1988 Doppler (WSR-88Ds) on 8–9 May 2007. The MCS moved across northwest Texas and western and central Oklahoma; two tornadoes rated as category 1 on the enhanced Fujita scale (EF-1) and one tornado of EF-0 intensity were reported during the event, just to the north of the IP-1 network. This was the first tornadic convective system observed by CASA. To quantify the impacts of CASA radar data in storm-scale NWP, a set of data assimilation experiments were performed using the Advanced Regional Prediction System (ARPS) ensemble Kalman filter (EnKF) system configured with full model physics and high-resolution terrain. Data from four CASA IP-1 radars and five WSR-88Ds were assimilated in some of the experiments. The ensemble contained 40 members, and radar data were assimilated every 5 min for 1 h. While the assimilation of WSR-88D data alone was able to produce a reasonably accurate analysis of the convective system, assimilating CASA data in addition to WSR-88D data is found to improve the representation of storm-scale circulations, particularly in the lowest few kilometers of the atmosphere, as evidenced by analyses of gust front position and comparison of simulated Vr with observations. Assimilating CASA data decreased RMS innovation of the resulting ensemble mean analyses of Z, particularly in early assimilation cycles, suggesting that the addition of CASA data allowed the EnKF system to more quickly achieve a good result. Use of multiple microphysics schemes in the forecast ensemble was found to alleviate underdispersion by increasing the ensemble spread. This work is the first assimilating real CASA data into an NWP model using EnKF.


2014 ◽  
Vol 142 (5) ◽  
pp. 1892-1907 ◽  
Author(s):  
Mingjun Wang ◽  
Ming Xue ◽  
Kun Zhao ◽  
Jili Dong

Abstract A tropical cyclone (TC) circulation Tracking Radar Echo by Correlation technique (T-TREC) developed recently is applied to derive horizontal winds from single Doppler radar reflectivity Z data (combined with radial velocity Vr data when available). The typically much longer maximum range of Z observations compared to Vr data allows for much larger spatial coverage of the T-TREC-retrieved winds (VTREC) when a TC first enters the maximum range of a coastal radar. Retrieved using data from more than one scan volume, the T-TREC winds also contain valuable cross-beam wind information. The VTREC or Vr data at 30-min intervals are assimilated into the Advanced Regional Prediction System (ARPS) model at 3-km grid spacing using an ensemble Kalman filter, over a 2-h window shortly after Typhoon Jangmi (2008) entered the Vr coverage area of an operational weather radar of Taiwan. The assimilation of VTREC data produces analyses of the typhoon structure and intensity that more closely match observations than analyses produced using Vr data or the reference Global Forecast System (GFS) analysis. Subsequent 28-h forecasts of intensity, track, structure, and precipitation are also improved by assimilating VTREC data. Further sensitivity experiments show that assimilation of VTREC data can build up a reasonably strong vortex in 1 h, while a longer assimilation period is required to spin up the vortex when assimilating Vr. Although the difference between assimilating VTREC and Vr is smaller when the assimilation window is longer, the improvement from assimilating VTREC is still evident. Assimilating Z data in addition to Vr or VTREC results in little further improvement.


2018 ◽  
Vol 75 (9) ◽  
pp. 3115-3137 ◽  
Author(s):  
Liping Luo ◽  
Ming Xue ◽  
Kefeng Zhu ◽  
Bowen Zhou

Abstract During the afternoon of 28 April 2015, a multicellular convective system swept southward through much of Jiangsu Province, China, over about 7 h, producing egg-sized hailstones on the ground. The hailstorm event is simulated using the Advanced Regional Prediction System (ARPS) at 1-km grid spacing. Different configurations of the Milbrandt–Yau microphysics scheme are used, predicting one, two, and three moments of the hydrometeor particle size distributions (PSDs). Simulated reflectivity and maximum estimated size of hail (MESH) derived from the simulations are verified against reflectivity observed by operational S-band Doppler radars and radar-derived MESH, respectively. Comparisons suggest that the general evolution of the hailstorm is better predicted by the three-moment scheme, and neighborhood-based MESH evaluation further confirms the advantage of the three-moment scheme in hail size prediction. Surface accumulated hail mass, number, and hail distribution characteristics within simulated storms are examined across sensitivity experiments. Results suggest that multimoment schemes produce more realistic hail distribution characteristics, with the three-moment scheme performing the best. Size sorting is found to play a significant role in determining hail distribution within the storms. Detailed microphysical budget analyses are conducted for each experiment, and results indicate that the differences in hail growth processes among the experiments can be mainly ascribed to the different treatments of the shape parameter within different microphysics schemes. Both the differences in size sorting and hail growth processes contribute to the simulated hail distribution differences within storms and at the surface.


2017 ◽  
Vol 146 (1) ◽  
pp. 95-118 ◽  
Author(s):  
Xiaoshi Qiao ◽  
Shizhang Wang ◽  
Jinzhong Min

Abstract The concept of stochastic parameterization provides an opportunity to represent spatiotemporal errors caused by microphysics schemes that play important roles in supercell simulations. In this study, two stochastic methods, the stochastically perturbed temperature tendency from microphysics (SPTTM) method and the stochastically perturbed intercept parameters of microphysics (SPIPM) method, are implemented within the Lin scheme, which is based on the Advanced Regional Prediction System (ARPS) model, and are tested using an idealized supercell case. The SPTTM and SPIPM methods perturb the temperature tendency and the intercept parameters (IPs), respectively. Both methods use recursive filters to generate horizontally smooth perturbations and adopt the barotropic structure for the perturbation r, which is multiplied by tendencies or parameters from this parameterization. A double-moment microphysics scheme is used for the truth run. Compared to the multiparameter method, which uses randomly perturbed prescribed parameters, stochastic methods often produce larger ensemble spreads and better forecast the intensity of updraft helicity (UH). The SPTTM method better predicts the intensity by intensifying the midlevel heating with its positive perturbation r, whereas it performs worse in the presence of negative perturbation. In contrast, the SPIPM method can increase the intensity of UH by either positive or negative perturbation, which increases the likelihood for members to predict strong UH.


Sign in / Sign up

Export Citation Format

Share Document