Assimilation of T-TREC-Retrieved Winds from Single-Doppler Radar with an Ensemble Kalman Filter for the Forecast of Typhoon Jangmi (2008)

2014 ◽  
Vol 142 (5) ◽  
pp. 1892-1907 ◽  
Author(s):  
Mingjun Wang ◽  
Ming Xue ◽  
Kun Zhao ◽  
Jili Dong

Abstract A tropical cyclone (TC) circulation Tracking Radar Echo by Correlation technique (T-TREC) developed recently is applied to derive horizontal winds from single Doppler radar reflectivity Z data (combined with radial velocity Vr data when available). The typically much longer maximum range of Z observations compared to Vr data allows for much larger spatial coverage of the T-TREC-retrieved winds (VTREC) when a TC first enters the maximum range of a coastal radar. Retrieved using data from more than one scan volume, the T-TREC winds also contain valuable cross-beam wind information. The VTREC or Vr data at 30-min intervals are assimilated into the Advanced Regional Prediction System (ARPS) model at 3-km grid spacing using an ensemble Kalman filter, over a 2-h window shortly after Typhoon Jangmi (2008) entered the Vr coverage area of an operational weather radar of Taiwan. The assimilation of VTREC data produces analyses of the typhoon structure and intensity that more closely match observations than analyses produced using Vr data or the reference Global Forecast System (GFS) analysis. Subsequent 28-h forecasts of intensity, track, structure, and precipitation are also improved by assimilating VTREC data. Further sensitivity experiments show that assimilation of VTREC data can build up a reasonably strong vortex in 1 h, while a longer assimilation period is required to spin up the vortex when assimilating Vr. Although the difference between assimilating VTREC and Vr is smaller when the assimilation window is longer, the improvement from assimilating VTREC is still evident. Assimilating Z data in addition to Vr or VTREC results in little further improvement.

2012 ◽  
Vol 140 (5) ◽  
pp. 1457-1475 ◽  
Author(s):  
Youngsun Jung ◽  
Ming Xue ◽  
Mingjing Tong

Abstract The performance of ensemble Kalman filter (EnKF) analysis is investigated for the tornadic supercell on 29–30 May 2004 in Oklahoma using a dual-moment (DM) bulk microphysics scheme in the Advanced Regional Prediction System (ARPS) model. The comparison of results using single-moment (SM) and DM microphysics schemes evaluates the benefits of using one over the other during storm analysis. Observations from a single operational Weather Surveillance Radar-1988 Doppler (WSR-88D) are assimilated and a polarimetric WSR-88D in Norman, Oklahoma (KOUN), is used to assess the quality of the analysis. Analyzed reflectivity and radial velocity in the SM and DM experiments compare favorably with independent radar observations in general. However, simulated polarimetric signatures obtained from analyses using a DM scheme agree significantly better with polarimetric signatures observed by KOUN in terms of the general structure, location, and intensity of the signatures than those generated from analyses using an SM scheme. These results demonstrate for the first time for a real supercell storm that EnKF data assimilation using a numerical model with an adequate microphysics scheme (i.e., a scheme that predicts at least two moments of the hydrometeor size distributions) is capable of producing polarimetric radar signatures similar to those seen in observations without directly assimilating polarimetric data. In such cases, the polarimetric data also serve as completely independent observations for the verification purposes.


2013 ◽  
Vol 2013 ◽  
pp. 1-18
Author(s):  
Edward Natenberg ◽  
Jidong Gao ◽  
Ming Xue ◽  
Frederick H. Carr

A three-dimensional variational (3DVAR) assimilation technique developed for a convective-scale NWP model—advanced regional prediction system (ARPS)—is used to analyze the 8 May 2003, Moore/Midwest City, Oklahoma tornadic supercell thunderstorm. Previous studies on this case used only one or two radars that are very close to this storm. However, three other radars observed the upper-level part of the storm. Because these three radars are located far away from the targeted storm, they were overlooked by previous studies. High-frequency intermittent 3DVAR analyses are performed using the data from five radars that together provide a more complete picture of this storm. The analyses capture a well-defined mesocyclone in the midlevels and the wind circulation associated with a hook-shaped echo. The analyses produced through this technique are used as initial conditions for a 40-minute storm-scale forecast. The impact of multiple radars on a short-term NWP forecast is most evident when compared to forecasts using data from only one and two radars. The use of all radars provides the best forecast in which a strong low-level mesocyclone develops and tracks in close proximity to the actual tornado damage path.


2011 ◽  
Vol 139 (11) ◽  
pp. 3446-3468 ◽  
Author(s):  
Nathan Snook ◽  
Ming Xue ◽  
Youngsun Jung

Abstract One of the goals of the National Science Foundation Engineering Research Center (ERC) for Collaborative Adaptive Sensing of the Atmosphere (CASA) is to improve storm-scale numerical weather prediction (NWP) by collecting data with a dense X-band radar network that provides high-resolution low-level coverage, and by assimilating such data into NWP models. During the first spring storm season after the deployment of four radars in the CASA Integrated Project-1 (IP-1) network in southwest Oklahoma, a tornadic mesoscale convective system (MCS) was captured by CASA and surrounding Weather Surveillance Radars-1988 Doppler (WSR-88Ds) on 8–9 May 2007. The MCS moved across northwest Texas and western and central Oklahoma; two tornadoes rated as category 1 on the enhanced Fujita scale (EF-1) and one tornado of EF-0 intensity were reported during the event, just to the north of the IP-1 network. This was the first tornadic convective system observed by CASA. To quantify the impacts of CASA radar data in storm-scale NWP, a set of data assimilation experiments were performed using the Advanced Regional Prediction System (ARPS) ensemble Kalman filter (EnKF) system configured with full model physics and high-resolution terrain. Data from four CASA IP-1 radars and five WSR-88Ds were assimilated in some of the experiments. The ensemble contained 40 members, and radar data were assimilated every 5 min for 1 h. While the assimilation of WSR-88D data alone was able to produce a reasonably accurate analysis of the convective system, assimilating CASA data in addition to WSR-88D data is found to improve the representation of storm-scale circulations, particularly in the lowest few kilometers of the atmosphere, as evidenced by analyses of gust front position and comparison of simulated Vr with observations. Assimilating CASA data decreased RMS innovation of the resulting ensemble mean analyses of Z, particularly in early assimilation cycles, suggesting that the addition of CASA data allowed the EnKF system to more quickly achieve a good result. Use of multiple microphysics schemes in the forecast ensemble was found to alleviate underdispersion by increasing the ensemble spread. This work is the first assimilating real CASA data into an NWP model using EnKF.


2005 ◽  
Vol 133 (7) ◽  
pp. 1789-1807 ◽  
Author(s):  
Mingjing Tong ◽  
Ming Xue

Abstract A Doppler radar data assimilation system is developed based on an ensemble Kalman filter (EnKF) method and tested with simulated radar data from a supercell storm. As a first implementation, it is assumed that the forward models are perfect and that the radar data are sampled at the analysis grid points. A general purpose nonhydrostatic compressible model is used with the inclusion of complex multiclass ice microphysics. New aspects of this study compared to previous work include the demonstration of the ability of the EnKF method to retrieve multiple microphysical species associated with a multiclass ice microphysics scheme, and to accurately retrieve the wind and thermodynamic variables. Also new are the inclusion of reflectivity observations and the determination of the relative role of the radial velocity and reflectivity data as well as their spatial coverage in recovering the full-flow and cloud fields. In general, the system is able to reestablish the model storm extremely well after a number of assimilation cycles, and best results are obtained when both radial velocity and reflectivity data, including reflectivity information outside of the precipitation regions, are used. Significant positive impact of the reflectivity assimilation is found even though the observation operator involved is nonlinear. The results also show that a compressible model that contains acoustic modes, hence the associated error growth, performs at least as well as an anelastic model used in previous EnKF studies at the cloud scale. Flow-dependent and dynamically consistent background error covariances estimated from the forecast ensemble play a critical role in successful assimilation and retrieval. When the assimilation cycles start from random initial perturbations, better results are obtained when the updating of the fields that are not directly related to radar reflectivity is withheld during the first few cycles. In fact, during the first few cycles, the updating of the variables indirectly related to reflectivity hurts the analysis. This is so because the estimated background covariances are unreliable at this stage of the data assimilation process, which is related to the way the forecast ensemble is initialized. Forecasts of supercell storms starting from the best-assimilated initial conditions are shown to remain very good for at least 2 h.


2007 ◽  
Vol 135 (2) ◽  
pp. 507-525 ◽  
Author(s):  
Ming Hu ◽  
Ming Xue

Abstract Various configurations of the intermittent data assimilation procedure for Level-II Weather Surveillance Radar-1988 Doppler radar data are examined for the analysis and prediction of a tornadic thunderstorm that occurred on 8 May 2003 near Oklahoma City, Oklahoma. Several tornadoes were produced by this thunderstorm, causing extensive damages in the south Oklahoma City area. Within the rapidly cycled assimilation system, the Advanced Regional Prediction System three-dimensional variational data assimilation (ARPS 3DVAR) is employed to analyze conventional and radar radial velocity data, while the ARPS complex cloud analysis procedure is used to analyze cloud and hydrometeor fields and adjust in-cloud temperature and moisture fields based on reflectivity observations and the preliminary analysis of the atmosphere. Forecasts for up to 2.5 h are made from the assimilated initial conditions. Two one-way nested grids at 9- and 3-km grid spacings are employed although the assimilation configuration experiments are conducted for the 3-km grid only while keeping the 9-km grid configuration the same. Data from the Oklahoma City radar are used. Different combinations of the assimilation frequency, in-cloud temperature adjustment schemes, and the length and coverage of the assimilation window are tested, and the results are discussed with respect to the length and evolution stage of the thunderstorm life cycle. It is found that even though the general assimilation method remains the same, the assimilation settings can significantly impact the results of assimilation and the subsequent forecast. For this case, a 1-h-long assimilation window covering the entire initial stage of the storm together with a 10-min spinup period before storm initiation works best. Assimilation frequency and in-cloud temperature adjustment scheme should be set carefully to add suitable amounts of potential energy during assimilation. High assimilation frequency does not necessarily lead to a better result because of the significant adjustment during the initial forecast period. When a short assimilation window is used, covering the later part of the initial stage of storm and using a high assimilation frequency and a temperature adjustment scheme based on latent heat release can quickly build up the storm and produce a reasonable analysis and forecast. The results also show that when the data from a single Doppler radar are assimilated with properly chosen assimilation configurations, the model is able to predict the evolution of the 8 May 2003 Oklahoma City tornadic thunderstorm well for up to 2.5 h. The implications of the choices of assimilation settings for real-time applications are discussed.


2003 ◽  
Vol 131 (8) ◽  
pp. 1663-1677 ◽  
Author(s):  
Chris Snyder ◽  
Fuqing Zhang

Abstract Assimilation of Doppler radar data into cloud models is an important obstacle to routine numerical weather prediction for convective-scale motions; the difficulty lies in initializing fields of wind, temperature, moisture, and condensate given only observations of radial velocity and reflectivity from the radar. This paper investigates the potential of the ensemble Kalman filter (EnKF), which estimates the covariances between observed variables and the state through an ensemble of forecasts, to assimilate radar observations at convective scales. In the basic experiment, simulated observations are extracted from a reference simulation of a splitting supercell and assimilated using the EnKF and the same numerical model that produced the reference simulation. The EnKF produces accurate analyses, including the unobserved variables, after roughly 30 min (or six scans) of radial velocity observations. Additional experiments, in which forecasts are made from the ensemble-mean analysis, reveal that forecast errors grow significantly in this simple system, so that the ability of the EnKF to track the reference solution is not simply because of stable system dynamics. It is also found that the covariances between radial velocity and temperature, moisture, and condensate are important to the quality of the analyses, as is the initialization chosen for the ensemble members prior to assimilating the first observations. These results are promising, especially given the ease of implementing the EnKF. A number of important issues remain, however, including the initialization of the ensemble prior to the first observation, the treatment of uncertainty in the environmental sounding, the role of error in the forecast model (particularly the microphysical parameterizations), and the treatment of lateral boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document