scholarly journals Ensemble Kalman Filter Assimilation of Polarimetric Radar Observations for the 20 May 2013 Oklahoma Tornadic Supercell Case

2019 ◽  
Vol 147 (7) ◽  
pp. 2511-2533 ◽  
Author(s):  
Bryan Putnam ◽  
Ming Xue ◽  
Youngsun Jung ◽  
Nathan Snook ◽  
Guifu Zhang

Abstract Real polarimetric radar observations are directly assimilated for the first time using the ensemble Kalman filter (EnKF) for a supercell case from 20 May 2013 in Oklahoma. A double-moment microphysics scheme and advanced polarimetric radar observation operators are used together to estimate the model states. Lookup tables for the observation operators are developed based on T-matrix scattering amplitudes for all hydrometeor categories, which improve upon previous curved-fitted approximations of T-matrix scattering amplitudes or the Rayleigh approximation. Two experiments are conducted: one assimilates reflectivity (Z) and radial velocity (Vr) (EXPZ), and one assimilates in addition differential reflectivity (ZDR) below the observed melting level at ~2-km height (EXPZZDR). In the EnKF analyses, EXPZZDR exhibits a ZDR arc that better matches observations than EXPZ. EXPZZDR also has higher ZDR above 2 km, consistent with the observed ZDR column. Additionally, EXPZZDR has an improved estimate of the model microphysical states. Specifically, the rain mean mass diameter (Dnr) in EXPZZDR is higher in the ZDR arc region and the total rain number concentration (Ntr) is lower downshear in the forward flank than EXPZ when compared to values retrieved from the polarimetric observations. Finally, a negative gradient of hail mean mass diameter (Dnh) is found in the right-forward flank of the EXPZZDR analysis, which supports previous findings indicating that size sorting of hail, as opposed to rain, has a more significant impact on low-level polarimetric signatures. This paper represents a proof-of-concept study demonstrating the value of assimilating polarimetric radar data in improving the analysis of features and states related to microphysics in supercell storms.

2014 ◽  
Vol 142 (1) ◽  
pp. 141-162 ◽  
Author(s):  
Bryan J. Putnam ◽  
Ming Xue ◽  
Youngsun Jung ◽  
Nathan Snook ◽  
Guifu Zhang

Abstract Doppler radar data are assimilated with an ensemble Kalman Filter (EnKF) in combination with a double-moment (DM) microphysics scheme in order to improve the analysis and forecast of microphysical states and precipitation structures within a mesoscale convective system (MCS) that passed over western Oklahoma on 8–9 May 2007. Reflectivity and radial velocity data from five operational Weather Surveillance Radar-1988 Doppler (WSR-88D) S-band radars as well as four experimental Collaborative and Adaptive Sensing of the Atmosphere (CASA) X-band radars are assimilated over a 1-h period using either single-moment (SM) or DM microphysics schemes within the forecast ensemble. Three-hour deterministic forecasts are initialized from the final ensemble mean analyses using a SM or DM scheme, respectively. Polarimetric radar variables are simulated from the analyses and compared with polarimetric WSR-88D observations for verification. EnKF assimilation of radar data using a multimoment microphysics scheme for an MCS case has not previously been documented in the literature. The use of DM microphysics during data assimilation improves simulated polarimetric variables through differentiation of particle size distributions (PSDs) within the stratiform and convective regions. The DM forecast initiated from the DM analysis shows significant qualitative improvement over the assimilation and forecast using SM microphysics in terms of the location and structure of the MCS precipitation. Quantitative precipitation forecasting skills are also improved in the DM forecast. Better handling of the PSDs by the DM scheme is believed to be responsible for the improved prediction of the surface cold pool, a stronger leading convective line, and improved areal extent of stratiform precipitation.


2012 ◽  
Vol 140 (5) ◽  
pp. 1457-1475 ◽  
Author(s):  
Youngsun Jung ◽  
Ming Xue ◽  
Mingjing Tong

Abstract The performance of ensemble Kalman filter (EnKF) analysis is investigated for the tornadic supercell on 29–30 May 2004 in Oklahoma using a dual-moment (DM) bulk microphysics scheme in the Advanced Regional Prediction System (ARPS) model. The comparison of results using single-moment (SM) and DM microphysics schemes evaluates the benefits of using one over the other during storm analysis. Observations from a single operational Weather Surveillance Radar-1988 Doppler (WSR-88D) are assimilated and a polarimetric WSR-88D in Norman, Oklahoma (KOUN), is used to assess the quality of the analysis. Analyzed reflectivity and radial velocity in the SM and DM experiments compare favorably with independent radar observations in general. However, simulated polarimetric signatures obtained from analyses using a DM scheme agree significantly better with polarimetric signatures observed by KOUN in terms of the general structure, location, and intensity of the signatures than those generated from analyses using an SM scheme. These results demonstrate for the first time for a real supercell storm that EnKF data assimilation using a numerical model with an adequate microphysics scheme (i.e., a scheme that predicts at least two moments of the hydrometeor size distributions) is capable of producing polarimetric radar signatures similar to those seen in observations without directly assimilating polarimetric data. In such cases, the polarimetric data also serve as completely independent observations for the verification purposes.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Daniel T. Dawson II ◽  
Louis J. Wicker ◽  
Edward R. Mansell ◽  
Youngsun Jung ◽  
Ming Xue

The impact of increasing the number of predicted moments in a multimoment bulk microphysics scheme is investigated using ensemble Kalman filter analyses and forecasts of the May 8, 2003 Oklahoma City tornadic supercell storm and the analyses are validated using dual-polarization radar observations. The triple-moment version of the microphysics scheme exhibits the best performance, relative to the single- and double-moment versions, in reproducing the low-ZDRhail core and high-ZDRarc, as well as an improved probabilistic track forecast of the mesocyclone. A comparison of the impact of the improved microphysical scheme on probabilistic forecasts of the mesocyclone track with the observed tornado track is also discussed.


2010 ◽  
Vol 138 (4) ◽  
pp. 1273-1292 ◽  
Author(s):  
Altuğ Aksoy ◽  
David C. Dowell ◽  
Chris Snyder

Abstract The quality of convective-scale ensemble forecasts, initialized from analysis ensembles obtained through the assimilation of radar observations using an ensemble Kalman filter (EnKF), is investigated for cases whose behaviors span supercellular, linear, and multicellular organization. This work is the companion to Part I, which focused on the quality of analyses during the 60-min analysis period. Here, the focus is on 30-min ensemble forecasts initialized at the end of that period. As in Part I, the Weather Research and Forecasting (WRF) model is employed as a simplified cloud model at 2-km horizontal grid spacing. Various observation-space and state-space verification metrics, computed both for ensemble means and individual ensemble members, are employed to assess the quality of ensemble forecasts comparatively across cases. While the cases exhibit noticeable differences in predictability, the forecast skill in each case, as measured by various metrics, decays on a time scale of tens of minutes. The ensemble spread also increases rapidly but significant outlier members or clustering among members are not encountered. Forecast quality is seen to be influenced to varying degrees by the respective initial soundings. While radar data assimilation is able to partially mitigate some of the negative effects in some situations, the supercell case, in particular, remains difficult to predict even after 60 min of data assimilation.


2012 ◽  
Vol 140 (2) ◽  
pp. 562-586 ◽  
Author(s):  
Nusrat Yussouf ◽  
David J. Stensrud

Observational studies indicate that the densities and intercept parameters of hydrometeor distributions can vary widely among storms and even within a single storm. Therefore, assuming a fixed set of microphysical parameters within a given microphysics scheme can lead to significant errors in the forecasts of storms. To explore the impact of variations in microphysical parameters, Observing System Simulation Experiments are conducted based on both perfect- and imperfect-model assumptions. Two sets of ensembles are designed using either fixed or variable parameters within the same single-moment microphysics scheme. The synthetic radar observations of a splitting supercell thunderstorm are assimilated into the ensembles over a 30-min period using an ensemble Kalman filter data assimilation technique followed by 1-h ensemble forecasts. Results indicate that in the presence of a model error, a multiparameter ensemble with a combination of different hydrometeor density and intercept parameters leads to improved analyses and forecasts and better captures the truth within the forecast envelope compared to single-parameter ensemble experiments with a single, constant, inaccurate hydrometeor intercept and density parameters. This conclusion holds when examining the general storm structure, the intensity of midlevel rotation, surface cold pool strength, and the extreme values of the model fields that are most helpful in determining and identifying potential hazards. Under a perfect-model assumption, the single- and multiparameter ensembles perform similarly as model error does not play a role in these experiments. This study highlights the potential for using a variety of realistic microphysical parameters across the ensemble members in improving the analyses and very short-range forecasts of severe weather events.


2009 ◽  
Vol 137 (7) ◽  
pp. 2105-2125 ◽  
Author(s):  
Fuqing Zhang ◽  
Yonghui Weng ◽  
Jason A. Sippel ◽  
Zhiyong Meng ◽  
Craig H. Bishop

This study explores the assimilation of Doppler radar radial velocity observations for cloud-resolving hurricane analysis, initialization, and prediction with an ensemble Kalman filter (EnKF). The case studied is Hurricane Humberto (2007), the first landfalling hurricane in the United States since the end of the 2005 hurricane season and the most rapidly intensifying near-landfall storm in U.S. history. The storm caused extensive damage along the southeast Texas coast but was poorly predicted by operational models and forecasters. It is found that the EnKF analysis, after assimilating radial velocity observations from three Weather Surveillance Radars-1988 Doppler (WSR-88Ds) along the Gulf coast, closely represents the best-track position and intensity of Humberto. Deterministic forecasts initialized from the EnKF analysis, despite displaying considerable variability with different lead times, are also capable of predicting the rapid formation and intensification of the hurricane. These forecasts are also superior to simulations without radar data assimilation or with a three-dimensional variational scheme assimilating the same radar observations. Moreover, nearly all members from the ensemble forecasts initialized with EnKF analysis perturbations predict rapid formation and intensification of the storm. However, the large ensemble spread of peak intensity, which ranges from a tropical storm to a category 2 hurricane, echoes limited predictability in deterministic forecasts of the storm and the potential of using ensembles for probabilistic forecasts of hurricanes.


2014 ◽  
Vol 142 (6) ◽  
pp. 2118-2138 ◽  
Author(s):  
Weiguang Chang ◽  
Kao-Shen Chung ◽  
Luc Fillion ◽  
Seung-Jong Baek

Abstract An 80-member high-resolution ensemble Kalman filter (HREnKF) is implemented for assimilating radar observations with the Canadian Meteorological Center’s (CMC’s) Global Environmental Multiscale Limited-Area Model (GEM-LAM). This system covers the Montréal, Canada, region and assimilates radar data from the McGill Radar Observatory with 4-km data thinning. The GEM-LAM operates in fully nonhydrostatic mode with 58 hybrid vertical levels and 1-km horizontal grid spacing. As a first step toward full radar data assimilation, only radial velocities are directly assimilated in this study. The HREnKF is applied on three 2011 summer cases having different precipitation structures: squall-line structure, isolated small-scale structures, and widespread stratiform precipitation. The short-term (<2 h) accuracy of the HREnKF analyses and forecasts is examined. In HREnKF, the ensemble spread is sufficient to cover the estimated error from innovations and lead to filter convergence. It results in part from a realistic initiation of HREnKF data assimilation cycle by using a Canadian regional EnKF system (itself coupled to a global EnKF) working at meso- and synoptic scales. The filter convergence is confirmed by the HREnKF background fields gradually approaching to radar observations as the assimilation cycling proceeds. At each analysis step, it is clearly shown that unobserved variables are significantly modified through HREnKF cross correlation of errors from the ensemble. Radar reflectivity observations are used to verify the improvements in analyses and short-term forecasts achievable by assimilating only radial velocities. Further developments of the analysis system are discussed.


Sign in / Sign up

Export Citation Format

Share Document