scholarly journals Four-Dimensional Variational Data Assimilation for the Canadian Regional Deterministic Prediction System

2012 ◽  
Vol 140 (5) ◽  
pp. 1517-1538 ◽  
Author(s):  
Monique Tanguay ◽  
Luc Fillion ◽  
Ervig Lapalme ◽  
Manon Lajoie

Abstract As a second step in the development of the Canadian Regional Data Assimilation System following Fillion et al., this study extends the approach to the four-dimensional variational data assimilation (4D-Var) context. Emphasis is first put on illustrating the importance of controlling lateral boundary conditions (LBCs). The use in the minimization of a horizontal grid over a domain exceeding the horizontal grid of the high-resolution nonlinear model is then proposed. The authors examine the performance of this 4D-Var formulation as an upcoming upgrade to the currently operational regional three-dimensional variational data assimilation (3D-Var) system. Forecast verifications against radiosonde data for 118 winter cases and 118 summer cases were performed. Results indicate a slight positive impact up to 48 h against North American radiosondes, but with a significant positive impact (especially for winds) at mid- and high latitudes during the summer. Accumulated precipitation scores over 24 h, whether during the first or second day of the forecasts, are slightly improved. The regional 4D-Var analysis system described in this study can run within current real-time “regional run” allocation for operations at the Canadian Meteorological Center (CMC). Future improvements of this system are briefly mentioned especially regarding the upcoming computer upgrade at CMC.

2017 ◽  
Vol 145 (3) ◽  
pp. 1019-1032 ◽  
Author(s):  
William F. Campbell ◽  
Elizabeth A. Satterfield ◽  
Benjamin Ruston ◽  
Nancy L. Baker

Appropriate specification of the error statistics for both observational data and short-term forecasts is necessary to produce an optimal analysis. Observation error stems from instrument error, forward model error, and error of representation. All sources of observation error, particularly error of representation, can lead to nonzero correlations. While correlated forecast error has been accounted for since the early days of atmospheric data assimilation, observation error has typically been treated as uncorrelated until relatively recently. Thinning, averaging, and/or inflation of the assigned observation error variance have been employed to compensate for unaccounted error correlations, especially for high-resolution satellite data. In this study, the benefits of accounting for nonzero vertical (interchannel) correlation for both the Advanced Technology Microwave Satellite (ATMS) and Infrared Atmospheric Sounding Interferometer (IASI) in the NRL Atmospheric Variational Data Assimilation System-Accelerated Representer (NAVDAS-AR) are assessed. The vertical observation error covariance matrix for the ATMS and IASI instruments was estimated using the Desroziers method. The results suggest lowering the assigned error variance and introducing strong correlations, especially in the moisture-sensitive channels. Strong positive impact on forecast skill (verified against both the ECMWF analyses and high-quality radiosonde data) is shown in both the ATMS and IASI instruments. Additionally, the convergence of the iterative solver in NAVDAS-AR can be improved by small modifications to the observation error covariance matrices, resulting in further reduction in RMS error.


Author(s):  
Z. Zang ◽  
X. Pan ◽  
W. You ◽  
Y. Liang

A three-dimensional variational data assimilation system is implemented within the Weather Research and Forecasting/Chemistry model, and the control variables consist of eight species of the Model for Simulation Aerosol Interactions and Chemistry scheme. In the experiments, the three-dimensional profiles of aircraft speciated observations and surface concentration observations acquired during the California Research at the Nexus of Air Quality and Climate Change field campaign are assimilated. The data assimilation experiments are performed at 02:00 local time 2 June 2010, assimilating surface observations at 02:00 and aircraft observations from 01:30 to 02:30 local time. The results show that the assimilation of both aircraft and surface observations improves the subsequent forecasts. The improved forecast skill resulting from the assimilation of the aircraft profiles persists a time longer than the assimilation of the surface observations, which suggests the necessity of vertical profile observations for extending aerosol forecasting time.


2008 ◽  
Vol 53 (22) ◽  
pp. 3446-3457 ◽  
Author(s):  
JiShan Xue ◽  
ShiYu Zhuang ◽  
GuoFu Zhu ◽  
Hua Zhang ◽  
ZhiQuan Liu ◽  
...  

2005 ◽  
Vol 133 (4) ◽  
pp. 829-843 ◽  
Author(s):  
Milija Zupanski ◽  
Dusanka Zupanski ◽  
Tomislava Vukicevic ◽  
Kenneth Eis ◽  
Thomas Vonder Haar

A new four-dimensional variational data assimilation (4DVAR) system is developed at the Cooperative Institute for Research in the Atmosphere (CIRA)/Colorado State University (CSU). The system is also called the Regional Atmospheric Modeling Data Assimilation System (RAMDAS). In its present form, the 4DVAR system is employing the CSU/Regional Atmospheric Modeling System (RAMS) nonhydrostatic primitive equation model. The Weather Research and Forecasting (WRF) observation operator is used to access the observations, adopted from the WRF three-dimensional variational data assimilation (3DVAR) algorithm. In addition to the initial conditions adjustment, the RAMDAS includes the adjustment of model error (bias) and lateral boundary conditions through an augmented control variable definition. Also, the control variable is defined in terms of the velocity potential and streamfunction instead of the horizontal winds. The RAMDAS is developed after the National Centers for Environmental Prediction (NCEP) Eta 4DVAR system, however with added improvements addressing its use in a research environment. Preliminary results with RAMDAS are presented, focusing on the minimization performance and the impact of vertical correlations in error covariance modeling. A three-dimensional formulation of the background error correlation is introduced and evaluated. The Hessian preconditioning is revisited, and an alternate algebraic formulation is presented. The results indicate a robust minimization performance.


2015 ◽  
Vol 143 (7) ◽  
pp. 2581-2599 ◽  
Author(s):  
Hyo-Jong Song ◽  
In-Hyuk Kwon

Abstract Atmospheric numerical models using the spectral element method with cubed-sphere grids (CSGs) are highly scalable in terms of parallelization. However, there are no data assimilation systems for spectral element numerical models. The authors devised a spectral transformation method applicable to the model data on a CSG (STCS) for a three-dimensional variational data assimilation system (3DVAR). To evaluate the 3DVAR system based on the STCS, the authors conducted observing system simulation experiments (OSSEs) using Community Atmosphere Model with Spectral Element dynamical core (CAM-SE). They observed root-mean-squared error reductions: 24% and 34% for zonal and meridional winds (U and V), respectively; 20% for temperature (T); 4% for specific humidity (Q); and 57% for surface pressure (Ps) in analysis and 28% and 27% for U and V, respectively; 25% for T; 21% for Q; and 31% for Ps in 72-h forecast fields. In this paper, under the premise that the same number of grid points is set, the authors show that the use of a greater polynomial degree, np, produces better performance than use of a greater element count, ne, on equiangular coordinates in terms of the wave representation.


2009 ◽  
Vol 137 (3) ◽  
pp. 1046-1060 ◽  
Author(s):  
Daryl T. Kleist ◽  
David F. Parrish ◽  
John C. Derber ◽  
Russ Treadon ◽  
Ronald M. Errico ◽  
...  

Abstract The gridpoint statistical interpolation (GSI) analysis system is a unified global/regional three-dimensional variational data assimilation (3DVAR) analysis code that has been under development for several years at the National Centers for Environmental Prediction (NCEP)/Environmental Modeling Center. It has recently been implemented into operations at NCEP in both the global and North American data assimilation systems (GDAS and NDAS, respectively). An important aspect of this development has been improving the balance of the analysis produced by GSI. The improved balance between variables has been achieved through the inclusion of a tangent-linear normal-mode constraint (TLNMC). The TLNMC method has proven to be very robust and effective. The TLNMC as part of the global GSI system has resulted in substantial improvement in data assimilation at NCEP.


Sign in / Sign up

Export Citation Format

Share Document