A three-dimensional variational data assimilation system for the South China Sea: preliminary results from observing system simulation experiments

2016 ◽  
Vol 66 (5) ◽  
pp. 737-750 ◽  
Author(s):  
Shiqiu Peng ◽  
Xuezhi Zeng ◽  
Zhijin Li
2008 ◽  
Vol 53 (22) ◽  
pp. 3446-3457 ◽  
Author(s):  
JiShan Xue ◽  
ShiYu Zhuang ◽  
GuoFu Zhu ◽  
Hua Zhang ◽  
ZhiQuan Liu ◽  
...  

Author(s):  
Z. Zang ◽  
X. Pan ◽  
W. You ◽  
Y. Liang

A three-dimensional variational data assimilation system is implemented within the Weather Research and Forecasting/Chemistry model, and the control variables consist of eight species of the Model for Simulation Aerosol Interactions and Chemistry scheme. In the experiments, the three-dimensional profiles of aircraft speciated observations and surface concentration observations acquired during the California Research at the Nexus of Air Quality and Climate Change field campaign are assimilated. The data assimilation experiments are performed at 02:00 local time 2 June 2010, assimilating surface observations at 02:00 and aircraft observations from 01:30 to 02:30 local time. The results show that the assimilation of both aircraft and surface observations improves the subsequent forecasts. The improved forecast skill resulting from the assimilation of the aircraft profiles persists a time longer than the assimilation of the surface observations, which suggests the necessity of vertical profile observations for extending aerosol forecasting time.


2005 ◽  
Vol 133 (4) ◽  
pp. 829-843 ◽  
Author(s):  
Milija Zupanski ◽  
Dusanka Zupanski ◽  
Tomislava Vukicevic ◽  
Kenneth Eis ◽  
Thomas Vonder Haar

A new four-dimensional variational data assimilation (4DVAR) system is developed at the Cooperative Institute for Research in the Atmosphere (CIRA)/Colorado State University (CSU). The system is also called the Regional Atmospheric Modeling Data Assimilation System (RAMDAS). In its present form, the 4DVAR system is employing the CSU/Regional Atmospheric Modeling System (RAMS) nonhydrostatic primitive equation model. The Weather Research and Forecasting (WRF) observation operator is used to access the observations, adopted from the WRF three-dimensional variational data assimilation (3DVAR) algorithm. In addition to the initial conditions adjustment, the RAMDAS includes the adjustment of model error (bias) and lateral boundary conditions through an augmented control variable definition. Also, the control variable is defined in terms of the velocity potential and streamfunction instead of the horizontal winds. The RAMDAS is developed after the National Centers for Environmental Prediction (NCEP) Eta 4DVAR system, however with added improvements addressing its use in a research environment. Preliminary results with RAMDAS are presented, focusing on the minimization performance and the impact of vertical correlations in error covariance modeling. A three-dimensional formulation of the background error correlation is introduced and evaluated. The Hessian preconditioning is revisited, and an alternate algebraic formulation is presented. The results indicate a robust minimization performance.


2015 ◽  
Vol 143 (7) ◽  
pp. 2581-2599 ◽  
Author(s):  
Hyo-Jong Song ◽  
In-Hyuk Kwon

Abstract Atmospheric numerical models using the spectral element method with cubed-sphere grids (CSGs) are highly scalable in terms of parallelization. However, there are no data assimilation systems for spectral element numerical models. The authors devised a spectral transformation method applicable to the model data on a CSG (STCS) for a three-dimensional variational data assimilation system (3DVAR). To evaluate the 3DVAR system based on the STCS, the authors conducted observing system simulation experiments (OSSEs) using Community Atmosphere Model with Spectral Element dynamical core (CAM-SE). They observed root-mean-squared error reductions: 24% and 34% for zonal and meridional winds (U and V), respectively; 20% for temperature (T); 4% for specific humidity (Q); and 57% for surface pressure (Ps) in analysis and 28% and 27% for U and V, respectively; 25% for T; 21% for Q; and 31% for Ps in 72-h forecast fields. In this paper, under the premise that the same number of grid points is set, the authors show that the use of a greater polynomial degree, np, produces better performance than use of a greater element count, ne, on equiangular coordinates in terms of the wave representation.


2015 ◽  
Vol 32 (9) ◽  
pp. 1593-1613 ◽  
Author(s):  
Robert Atlas ◽  
Ross N. Hoffman ◽  
Zaizhong Ma ◽  
G. David Emmitt ◽  
Sidney A. Wood ◽  
...  

AbstractThe potential impact of Doppler wind lidar (DWL) observations from a proposed optical autocovariance wind lidar (OAWL) instrument is quantified in observing system simulation experiments (OSSEs). The OAWL design would provide profiles of useful wind vectors along a ground track to the left of the International Space Station (ISS), which is in a 51.6° inclination low-Earth orbit (LEO). These observations are simulated realistically, accounting for cloud and aerosol distributions inferred from the OSSE nature runs (NRs), and measurement and sampling error sources. The impact of the simulated observations is determined in both global and regional OSSE frameworks. The global OSSE uses the ECMWF T511 NR and the NCEP operational Global Data Assimilation System at T382 resolution. The regional OSSE uses an embedded hurricane NR and the NCEP operational HWRF data assimilation system with outer and inner domains of 9- and 3-km resolution, respectively.The global OSSE results show improved analyses and forecasts of tropical winds and extratropical geopotential heights. The tropical wind RMSEs are significantly reduced in the analyses and in short-term forecasts. The tropical wind improvement decays as the forecasts lengthen. The regional OSSEs are limited but show some improvements in hurricane track and intensity forecasts.


Sign in / Sign up

Export Citation Format

Share Document