scholarly journals Simulation of Dryline Misovortex Dynamics and Cumulus Formation

2012 ◽  
Vol 140 (11) ◽  
pp. 3525-3551 ◽  
Author(s):  
Michael S. Buban ◽  
Conrad L. Ziegler ◽  
Edward R. Mansell ◽  
Yvette P. Richardson

Abstract A dryline and misocyclones have been simulated in a cloud-resolving model by applying specified initial and time-dependent lateral boundary conditions obtained from analyses of the 22 May 2002 International H2O Project (IHOP_2002) dataset. The initial and lateral boundary conditions were obtained from a combination of the time–spaced Lagrangian analyses for temperature and moisture with horizontal velocities from multiple-Doppler wind syntheses. The simulated dryline, horizontal dry-convective rolls (HCRs) and open cells (OCCs), misocyclones, and cumulus clouds are similar to the corresponding observed features. The misocyclones move northward at nearly the mean boundary layer (BL) wind speed, rotate dryline gradients owing to their circulations, and move the local dryline eastward via their passage. Cumuli develop along a secondary dryline, along HCR and OCC segments between the primary and secondary drylines, along HCR and OCC segments that have moved over the dryline, and within the dryline updraft. After the initial shearing instability develops, misocyclogenesis proceeds from tilting and stretching of vorticity by the persistent secondary dryline circulation. The resulting misocyclone evolution is discussed.

2017 ◽  
Author(s):  
Efisio Solazzo ◽  
Christian Hogrefe ◽  
Augustin Colette ◽  
Marta Garcia-Vivanco ◽  
Stefano Galmarini

Abstract. The work here complements the overview analysis of the modelling systems participating in the third phase of the Air Quality Model Evaluation International Initiative (AQMEII3) by focusing on the performance for hourly surface ozone by two modelling systems, Chimere for Europe and CMAQ for North America. The evaluation strategy outlined in the course of the three phases of the AQMEII activity, aimed to build up a diagnostic methodology for model evaluation, is pursued here and novel diagnostic methods are proposed. In addition to evaluating the base case simulation in which all model components are configured in their standard mode, the analysis also makes use of sensitivity simulations in which the models have been applied by altering and/or zeroing lateral boundary conditions, emissions of anthropogenic precursors, and ozone dry deposition. To help understand of the causes of model deficiencies, the error components (bias, variance, and covariance) of the base case and of the sensitivity runs are analysed in conjunction with time-scale considerations and error modelling using the available error fields of temperature, wind speed, and NOx concentration. The results reveal the effectiveness and diagnostic power of the methods devised (which remains the main scope of this study), allowing the detection of the time scale and the fields that the two models are most sensitive to. The representation of planetary boundary layers (PBL) dynamics is pivotal to both models. In particular: i) The fluctuations slower than −1.5 days account for 70–85 % of the total ozone quadratic error; ii) A recursive, systematic error with daily periodicity is detected, responsible for 10–20 % of the quadratic total error; iii) Errors in representing the timing of the daily transition between stability regimes in the PBL are responsible for a covariance error as large as 9 ppb (as much as the standard deviation of the network-average ozone observations in summer in both Europe and North America); iv) The CMAQ ozone error has a weak/negligible dependence on the errors in NO2 and wind speed, while the error in NO2 significantly impacts the ozone error produced by Chimere; v) On a continent wide monitoring network-average, a zeroing out of anthropogenic emissions produces an error increase of 45 % (25 %) during summer and of 56 % (null) during winter for Chimere (CMAQ), while a zeroing out of lateral boundary conditions results in an ozone error increase of 30 % during summer and of 180 % during winter (CMAQ).


2012 ◽  
Vol 12 (7) ◽  
pp. 3511-3526 ◽  
Author(s):  
M. Andrejczuk ◽  
W. W. Grabowski ◽  
A. Gadian ◽  
R. Burton

Abstract. This paper presents application of the Weather Research and Forecasting (WRF) model to limited-area modeling of atmospheric processes over the subtropical south-eastern Pacific, with the emphasis on the stratocumulus-topped boundary layer. The simulations cover a domain from the VAMOS (Variability of the American Monsoon Systems) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) field project conducted in the subtropical south-eastern Pacific in October and November 2008. We focus on a day where the UK's BAe-146 research aircraft encountered Pockets of Open Cells (POCs) at the very western edge of its flight track, rather than on the entire campaign as investigated in previous limited-area modeling studies. Model results are compared to aircraft observations with the main conclusion that the simulated stratocumulus-topped boundary layer is significantly too shallow. This appears to be a combination of an already too shallow boundary layer in the dataset used to provide initial and lateral boundary conditions, and the inability of the WRF model to increase the boundary-layer height. Several sensitivity simulations, applying different subgrid-scale parameterizations available in the model, a larger computational domain and longer simulations, as well as a different dataset providing initial and lateral boundary conditions were all tried to improve the simulation. These changes appeared to have a rather small effect on the results. The model does simulate the formation of mesoscale cloud-free regions that one might consider similar to Pockets of Open Cells observed in nature. However, formation of these regions does not seem to be related to drizzle-induced transition from open- to closed-cell circulations as simulated by LES models. Instead, the cloud-free regions appear to result from mesoscale variations of the lower-tropspheric vertical velocity. Areas of negative vertical velocity with minima (a few cm s−1) near the boundary layer top seem to induce direct evaporation of the cloud layer. It remains to be seen in LES studies whether the mechanism seen in the model is realistic or if it is simply an artifact of interactions between resolved and parameterized processes.


2018 ◽  
Vol 18 (20) ◽  
pp. 14813-14835 ◽  
Author(s):  
Liza I. Díaz-Isaac ◽  
Thomas Lauvaux ◽  
Kenneth J. Davis

Abstract. Atmospheric transport model errors are one of the main contributors to the uncertainty affecting CO2 inverse flux estimates. In this study, we determine the leading causes of transport errors over the US upper Midwest with a large set of simulations generated with the Weather Research and Forecasting (WRF) mesoscale model. The various WRF simulations are performed using different meteorological driver datasets and physical parameterizations including planetary boundary layer (PBL) schemes, land surface models (LSMs), cumulus parameterizations and microphysics parameterizations. All the different model configurations were coupled to CO2 fluxes and lateral boundary conditions from the CarbonTracker inversion system to simulate atmospheric CO2 mole fractions. PBL height, wind speed, wind direction, and atmospheric CO2 mole fractions are compared to observations during a month in the summer of 2008, and statistical analyses were performed to evaluate the impact of both physics parameterizations and meteorological datasets on these variables. All of the physical parameterizations and the meteorological initial and boundary conditions contribute 3 to 4 ppm to the model-to-model variability in daytime PBL CO2 except for the microphysics parameterization which has a smaller contribution. PBL height varies across ensemble members by 300 to 400 m, and this variability is controlled by the same physics parameterizations. Daily PBL CO2 mole fraction errors are correlated with errors in the PBL height. We show that specific model configurations systematically overestimate or underestimate the PBL height averaged across the region with biases closely correlated with the choice of LSM, PBL scheme, and cumulus parameterization (CP). Domain average PBL wind speed is overestimated in nearly every model configuration. Both planetary boundary layer height (PBLH) and PBL wind speed biases show coherent spatial variations across the Midwest, with PBLH overestimated averaged across configurations by 300–400 m in the west, and PBL winds overestimated by about 1 m s−1 on average in the east. We find model configurations with lower biases averaged across the domain, but no single configuration is optimal across the entire region and for all meteorological variables. We conclude that model ensembles that include multiple physics parameterizations and meteorological initial conditions are likely to be necessary to encompass the atmospheric conditions most important to the transport of CO2 in the PBL, but that construction of such an ensemble will be challenging due to ensemble biases that vary across the region.


Sign in / Sign up

Export Citation Format

Share Document