scholarly journals Resolved Turbulence Characteristics in Large-Eddy Simulations Nested within Mesoscale Simulations Using the Weather Research and Forecasting Model

2014 ◽  
Vol 142 (2) ◽  
pp. 806-831 ◽  
Author(s):  
Jeff Mirocha ◽  
Branko Kosović ◽  
Gokhan Kirkil

Abstract One-way concurrent nesting within the Weather Research and Forecasting Model (WRF) is examined for conducting large-eddy simulations (LES) nested within mesoscale simulations. Wind speed, spectra, and resolved turbulent stresses and turbulence kinetic energy from the nested LES are compared with data from nonnested simulations using periodic lateral boundary conditions. Six different subfilter-scale (SFS) stress models are evaluated using two different nesting strategies under geostrophically forced flow over both flat and hilly terrain. Neutral and weakly convective conditions are examined. For neutral flow over flat terrain, turbulence appears on the nested LES domains only when using the two dynamic SFS stress models. The addition of small hills and valleys (wavelengths of 2.4 km and maximum slopes of ± 10°) yields small improvements, with all six models producing some turbulence on nested domains. Weak convection (surface heat fluxes of 10 W m−2) further accelerates the development of turbulence on all nested domains. However, considerable differences in key parameters are observed between the nested LES domains and their nonnested counterparts. Nesting of a finer LES within a coarser LES provides superior results to using only one nested LES domain. Adding temperature and velocity perturbations near the inlet planes of nested domains shows promise as an easy-to-implement method to accelerate turbulence generation and improve its accuracy on nested domains.

2013 ◽  
Vol 141 (3) ◽  
pp. 918-940 ◽  
Author(s):  
Jeff Mirocha ◽  
Gokhan Kirkil ◽  
Elie Bou-Zeid ◽  
Fotini Katopodes Chow ◽  
Branko Kosović

Abstract The Weather Research and Forecasting Model permits finescale large-eddy simulations (LES) to be nested within coarser simulations, an approach that can generate more accurate turbulence statistics and improve other aspects of simulated flows. However, errors are introduced into the finer domain from the nesting methodology. Comparing nested domain, flat-terrain simulations of the neutral atmospheric boundary layer with single-domain simulations using the same mesh, but instead using periodic lateral boundary conditions, reveals the errors contributed to the nested solution from the parent domain and nest interfaces. Comparison of velocity spectra shows good agreement among higher frequencies, but greater power predicted on the nested domain at lower frequencies. Profiles of mean wind speed show significant near-surface deficits near the inflow boundaries, but equilibrate to improved values with distance. Profiles of the vertical flux of x momentum show significant underprediction by the nested domain close to the surface and near the inlet boundaries. While these underpredictions of the stresses, which cause the near-surface velocity deficits, attenuate with distance within the nested domains, significant errors remain throughout. Profiles of the resolved turbulence kinetic energy show considerable deviations from their single-domain values throughout the nested domains. The authors examine the accuracy of these parameters and their sensitivities to the turbulence subfilter stress model, mesh resolution, and grid aspect ratio, and provide guidance to practitioners of nested LES.


Author(s):  
Alessio Golzio ◽  
Silvia Ferrarese ◽  
Claudio Cassardo ◽  
Gugliemina Adele Diolaiuti ◽  
Manuela Pelfini

AbstractWeather forecasts over mountainous terrain are challenging due to the complex topography that is necessarily smoothed by actual local-area models. As complex mountainous territories represent 20% of the Earth’s surface, accurate forecasts and the numerical resolution of the interaction between the surface and the atmospheric boundary layer are crucial. We present an assessment of the Weather Research and Forecasting model with two different grid spacings (1 km and 0.5 km), using two topography datasets (NASA Shuttle Radar Topography Mission and Global Multi-resolution Terrain Elevation Data 2010, digital elevation models) and four land-cover-description datasets (Corine Land Cover, U.S. Geological Survey land-use, MODIS30 and MODIS15, Moderate Resolution Imaging Spectroradiometer land-use). We investigate the Ortles Cevadale region in the Rhaetian Alps (central Italian Alps), focusing on the upper Forni Glacier proglacial area, where a micrometeorological station operated from 28 August to 11 September 2017. The simulation outputs are compared with observations at this micrometeorological station and four other weather stations distributed around the Forni Glacier with respect to the latent heat, sensible heat and ground heat fluxes, mixing-layer height, soil moisture, 2-m air temperature, and 10-m wind speed. The different model runs make it possible to isolate the contributions of land use, topography, grid spacing, and boundary-layer parametrizations. Among the considered factors, land use proves to have the most significant impact on results.


2021 ◽  
Author(s):  
Alfredo Peña ◽  
Branko Kosović ◽  
Jeffrey D. Mirocha

Abstract. We investigate the ability of the Weather Research and Forecasting model to perform large-eddy simulation of canonical flows. This is achieved through comparison of the simulation outputs with measurements from sonic anemometers on a 250-m meteorological mast located at Østerild, in northern Denmark. Østerild is on a flat and rough area, and for the predominant wind directions, the atmospheric flow can be considered to be close to homogeneous. The idealized simulated flows aim at representing atmospheric boundary layer turbulence under unstable, neutral, and stable stability conditions at the surface, which are statistically significant conditions observed at Østerild. We found that the resolved fields from the simulations appear to have the characteristics of the three stability regimes. Vertical profiles of observed mean wind speeds and direction are well reproduced by the simulations with the largest differences under near-neutral conditions, where the effect of the subgrid-scale model is evident on the vertical wind shear close to the surface. Vertical profiles of observed eddy fluxes are also well reproduced by the simulations with the largest differences for the three velocity component variances under stable stability conditions, although nearly always within the observed variability. With regards to turbulent kinetic energy, we find good agreement between observations and simulations at all vertical levels. Simulated and observed velocity spectra match very well, and show very similar behavior with height and with atmospheric stability within the low frequency interval; at the effective resolution, the simulated spectra show the typical drop-off of finite differences. Our findings demonstrate that these idealized simulations reproduce the characteristics of atmospheric stability regimes often observed at a high turbulent and flat site within a direction sector, where the air flows over nearly homogeneous land.


2015 ◽  
Vol 143 (11) ◽  
pp. 4393-4421 ◽  
Author(s):  
Colleen M. Kaul ◽  
João Teixeira ◽  
Kentaroh Suzuki

Abstract Arctic mixed-phase stratocumulus clouds are maintained by feedbacks between microphysical and dynamical phenomena, but the details of these interactions are incompletely understood. Although large-eddy simulations are a promising means of elucidating microphysics–turbulence relationships, the use of sophisticated microphysical schemes complicates analysis of their results. Here, the ability of a simplified one-moment scheme to capture basic features of this cloud type is investigated through simulations based on Mixed-Phase Arctic Cloud Experiment (MPACE), SHEBA/FIRE-ACE, and Indirect and Semi-Direct Aerosol Campaign (ISDAC) intercomparison studies. The results of the simple scheme show reasonable agreement with liquid and ice water path predictions reported by models using schemes of similar or greater complexity. Additional tests are performed to evaluate the sensitivity of the results to three main parameters of the scheme: the snow and ice size distribution intercept parameters and the exponent appearing in the temperature-dependent phase-partition function, which is used to diagnose cloud condensate amounts. Sensitivities of the SHEBA and ISDAC cases, both of which have low surface heat fluxes and low precipitation rates, tend to be similar, while the MPACE case, with higher surface fluxes and precipitation rates, shows somewhat different trends. Results of all three cases are found to be sensitive to the snow size distribution intercept parameter, but this quantity can be adequately estimated using a recently developed diagnostic expression based on observations of Arctic clouds.


2017 ◽  
Vol 145 (8) ◽  
pp. 3025-3048 ◽  
Author(s):  
Jeffrey D. Mirocha ◽  
Katherine A. Lundquist

To facilitate multiscale simulation using the Weather Research and Forecasting Model, vertical mesh refinement for one-way concurrent nested simulation was recently introduced. Grid refinement in the vertical dimension removes the requirement of different grid aspect ratios on the bounding versus the nested domain, such that results from refinement are in the horizontal directions only, and thereby can also reduce numerical errors on the bounding domain arising from large aspect ratios in the presence of complex terrain. Herein, the impacts of vertical grid refinement on the evolving downstream flow in nested large-eddy simulations are evaluated in relation to other model configuration choices, including turbulence subfilter-scale (SFS) stress models, mesh configuration, and alternative methods for calculating several near-surface flow parameters. Although vertical nesting requires coarsening of the vertical grid on the bounding domain, leading to a smaller range of resolved turbulence scales in the nest’s lateral boundary conditions, parameter values within the nested domains are generally only minimally impacted, relative to nesting using the same vertical grid on each domain. Two dynamic SFS models examined herein generally improved the simulated mean wind speed, turbulence kinetic energy, stresses and spectra, on both domains, and accelerated equilibration rates within nested domains, relative to two constant coefficient models. A new method of extrapolating horizontal velocity components to near-surface locations at nested domain lateral boundaries, and a correction to the calculation of deformation elements near the surface, are each shown to slightly alter the mean parameter values, yet only minimally impact equilibration rates within the nested domain.


2021 ◽  
Vol 6 (3) ◽  
pp. 645-661
Author(s):  
Alfredo Peña ◽  
Branko Kosović ◽  
Jeffrey D. Mirocha

Abstract. We investigate the ability of the Weather Research and Forecasting model to perform large-eddy simulation of canonical flows. This is achieved through comparison of the simulation outputs with measurements from sonic anemometers on a 250 m meteorological mast located at Østerild, in northern Denmark. Østerild is on a flat and rough area, and for the predominant wind directions, the atmospheric flow can be considered to be close to homogeneous. The idealized simulated flows aim at representing atmospheric boundary layer turbulence under unstable, neutral, and stable stability conditions at the surface, which are statistically significant conditions observed at Østerild. We found that the resolved fields from the simulations appear to have the characteristics of the three stability regimes. Vertical profiles of observed mean wind speeds and direction are well reproduced by the simulations, with the largest differences under near-neutral conditions, where the effect of the subgrid-scale model is evident on the vertical wind shear close to the surface. Vertical profiles of observed eddy fluxes are also well reproduced by the simulations, with the largest differences for the three velocity component variances under stable stability conditions, although nearly always within the observed variability. With regards to turbulent kinetic energy, we find good agreement between observations and simulations at all vertical levels. Simulated and observed velocity spectra match very well and show very similar behavior with height and with atmospheric stability within the low-frequency interval; at the effective resolution, the simulated spectra show the typical drop-off of finite differences. Our findings demonstrate that these idealized simulations reproduce the characteristics of atmospheric stability regimes often observed at a high turbulent and flat site within a direction sector, where the air flows over nearly homogeneous land.


Sign in / Sign up

Export Citation Format

Share Document