Global Survey of Precipitation Properties Observed during Tropical Cyclogenesis and Their Differences Compared to Nondeveloping Disturbances

2020 ◽  
Vol 148 (4) ◽  
pp. 1585-1606
Author(s):  
Jonathan Zawislak

Abstract This study evaluates precipitation properties involved in tropical cyclogenesis by analyzing a multiyear, global database of passive microwave overpasses of the pregenesis stage of developing disturbances and nondeveloping disturbances. Precipitation statistics are quantified using brightness temperature proxies from the 85–91-GHz channels of multiple spaceborne sensors, as well as retrieved rain rates. Proxies focus on the overall raining area, areal coverage of deep convection, and the proximity of precipitation to the disturbance center. Of interest are the differences in those proxies for developing versus nondeveloping disturbances, how the properties evolve during the pregenesis stage, and how they differ globally. The results indicate that, of all of the proxies examined, the total raining area and rain volume near the circulation center are the most useful precipitation-related predictors for genesis. The areal coverage of deep convection also differentiates developing from nondeveloping disturbances and, similar to the total raining area, generally also increases during the pregenesis stage, particularly within a day of genesis. As the threshold convective intensity is increased, pregenesis cases are less distinguishable from nondeveloping disturbances. Relative to the western Pacific and Indian Oceans, the Atlantic and eastern North Pacific Oceans have less precipitation and deep convection observed during genesis and the smallest differences between developing and nondeveloping disturbances. This suggests that the total raining area and areal coverage of deep convection associated with tropical disturbances are better predictors of tropical cyclogenesis fate in the Pacific and Indian Oceans than in the Atlantic and eastern North Pacific.

2020 ◽  
Vol 55 (11-12) ◽  
pp. 3469-3483
Author(s):  
Hongjie Zhang ◽  
Liang Wu ◽  
Ronghui Huang ◽  
Jau-Ming Chen ◽  
Tao Feng

2018 ◽  
Vol 31 (19) ◽  
pp. 7719-7738 ◽  
Author(s):  
Guosen Chen ◽  
Bin Wang

Well-organized eastward propagation of the Madden–Julian oscillation (MJO) is found to be accompanied by the leading suppressed convection (LSC) over the Maritime Continent (MC) and the western Pacific (WP) when the MJO convection is in the Indian Ocean (IO). However, it remains unclear how the LSC influences the MJO and what causes the LSC. The present study shows that the LSC is a prevailing precursor for eastward propagation of the MJO across the MC. The LSC enhances the coupling of IO convection and the Walker cell to its east [front Walker cell (FWC)] by increasing the zonal heating gradient. The enhanced FWC strengthens the low-level easterly, which increases boundary layer (BL) convergence and promotes congestus convection to the east of the deep convection; the enhanced congestus convection preconditions the lower to middle atmosphere, which further promotes the transition from congestus to deep convection and leads to eastward propagation of the MJO. The MJO ceases eastward propagation once the FWC decouples from it. Further analysis reveals that LSC has two major origins: one comes from the eastward propagation of the preceding IO dry phase associated with the MJO, and the other develops concurrently with the IO convection. In the latter case, the development of the LSC is brought about by a two-way interaction between the MJO’s tropical heating and the associated tropical–extratropical teleconnection: the preceding IO suppressed convection induces a tropical–extratropical teleconnection, which evolves and forms an anomalous western North Pacific cyclone that generates upper-level convergence and induces significant LSC.


2018 ◽  
Vol 146 (3) ◽  
pp. 853-870 ◽  
Author(s):  
Gregory R. Foltz ◽  
Karthik Balaguru ◽  
Samson Hagos

Sea surface temperature (SST) is one of the most important parameters for tropical cyclone (TC) intensification. Here, it is shown that the relationship between SST and TC intensification varies considerably from basin to basin, with SST explaining less than 4% of the variance in TC intensification rates in the Atlantic, 12% in the western North Pacific, and 23% in the eastern Pacific. Several factors are shown to be responsible for these interbasin differences. First, variability of SST along TCs’ tracks is lower in the Atlantic. This is due to smaller horizontal SST gradients in the Atlantic, compared to the Pacific, and stronger damping of prestorm SST’s contribution to TC intensification by the storm-induced cold SST wake in the Atlantic. The damping occurs because SST tends to vary in phase with TC-induced SST cooling: in the Gulf of Mexico and northwestern Atlantic, where SSTs are highest, TCs tend to be strongest and their translations slowest, resulting in the strongest storm-induced cooling. The tendency for TCs to be more intense over the warmest SST in the Atlantic also limits the usefulness of SST as a predictor since stronger storms are less likely to experience intensification. Finally, SST tends to vary out of phase with vertical wind shear and outflow temperature in the western Pacific. This strengthens the relationship between SST and TC intensification more in the western Pacific than in the eastern Pacific or Atlantic. Combined, these factors explain why prestorm SST is such a poor predictor of TC intensification in the Atlantic, compared to the eastern and western North Pacific.


2010 ◽  
Vol 67 (12) ◽  
pp. 3774-3792 ◽  
Author(s):  
Wallace Hogsett ◽  
Da-Lin Zhang

Abstract Although previous studies have shown the relationship between the Madden–Julian oscillation (MJO) and tropical cyclogenesis (TCG), many scale-interactive processes leading to TCG still remain mysterious. In this study, the larger-scale flow structures and evolution during the pregenesis, genesis, and intensification of Typhoon Chanchu (2006) near the equator are analyzed using NCEP’s final analysis, satellite observations, and 11-day nested numerical simulations with the Advanced Research Weather Research and Forecast model (ARW-WRF). Results show that the model could reproduce the structures and evolution of a synoptic westerly wind burst (WWB) associated with the MJO during the genesis of Chanchu, including the eastward progression of a WWB from the Indian Ocean into the Pacific Ocean, the modulation of the associated quasi-symmetric vortices, the initial slow spinup of a northern (pre-Chanchu) disturbance at the northeastern periphery of the WWB, and its general track and intensification. It is found that the MJO, likely together with a convectively coupled Kelvin wave, provides the necessary low-level convergence and rotation for the development of the pre-Chanchu disturbance, particularly through the eastward-propagating WWB. The incipient vortex evolves slowly westward, like a mixed Rossby–gravity wave, on the northern flank of the WWB, exhibits a vertically westward-tilted circulation structure, and eventually moves northward off of the equator. Results show that the interaction of the tilted vortex with moist easterly flows assists in the downtilt-right (i.e., to the right of the upward tilt) organization of deep convection, which in turn forces the tilted vortex to move toward the area of ongoing deep convection, thereby helping to partly decrease the vertical tilt with time. It is shown that despite several days of continuous convective overturning, sustained surface intensification does not commence until the vortex becomes upright in the vertical. A conceptual model is finally presented, relating the decreasing vortex tilt to convective development, storm movement, TCG, and surface intensification.


2008 ◽  
Vol 136 (6) ◽  
pp. 2006-2022 ◽  
Author(s):  
Cheng-Shang Lee ◽  
Kevin K. W. Cheung ◽  
Jenny S. N. Hui ◽  
Russell L. Elsberry

Abstract The mesoscale features of 124 tropical cyclone formations in the western North Pacific Ocean during 1999–2004 are investigated through large-scale analyses, satellite infrared brightness temperature (TB), and Quick Scatterometer (QuikSCAT) oceanic wind data. Based on low-level wind flow and surge direction, the formation cases are classified into six synoptic patterns: easterly wave (EW), northeasterly flow (NE), coexistence of northeasterly and southwesterly flow (NE–SW), southwesterly flow (SW), monsoon confluence (MC), and monsoon shear (MS). Then the general convection characteristics and mesoscale convective system (MCS) activities associated with these formation cases are studied under this classification scheme. Convection processes in the EW cases are distinguished from the monsoon-related formations in that the convection is less deep and closer to the formation center. Five characteristic temporal evolutions of the deep convection are identified: (i) single convection event, (ii) two convection events, (iii) three convection events, (iv) gradual decrease in TB, and (v) fluctuating TB, or a slight increase in TB before formation. Although no dominant temporal evolution differentiates cases in the six synoptic patterns, evolutions ii and iii seem to be the common routes taken by the monsoon-related formations. The overall percentage of cases with MCS activity at multiple times is 63%, and in 35% of cases more than one MCS coexisted. Most of the MC and MS cases develop multiple MCSs that lead to several episodes of deep convection. These two patterns have the highest percentage of coexisting MCSs such that potential interaction between these systems may play a role in the formation process. The MCSs in the monsoon-related formations are distributed around the center, except in the NE–SW cases in which clustering of MCSs is found about 100–200 km east of the center during the 12 h before formation. On average only one MCS occurs during an EW formation, whereas the mean value is around two for the other monsoon-related patterns. Both the mean lifetime and time of first appearance of MCS in EW are much shorter than those developed in other synoptic patterns, which indicates that the overall formation evolution in the EW case is faster. Moreover, this MCS is most likely to be found within 100 km east of the center 12 h before formation. The implications of these results to internal mechanisms of tropical cyclone formation are discussed in light of other recent mesoscale studies.


Zootaxa ◽  
2019 ◽  
Vol 4671 (3) ◽  
pp. 396-406
Author(s):  
RICARDO BRITZKE ◽  
NAÉRCIO A. MENEZES ◽  
MAURO NIRCHIO

Mugil setosus Gilbert 1892 was originally described by Gilbert based on specimens from Clarion Island, in the western and most remote of the Revillagigedo Islands, about 1,000 km off the western Pacific coast of Mexico. Examination of the type of material and recently collected specimens from Ecuador and Peru, resulted in the redescription provided herein. Diagnostic characters of the species were mainly: tip of the pelvic fin reaching beyond the vertical through the base of the third dorsal-fin spine, the pectoral-fin rays with ii+13–14 rays, the anterodorsal tip of second (soft) dorsal fin uniformly dark, and an external row of larger teeth, and more internally a patch of scattered smaller teeth, visible mainly in adults 150 mm SL. The expansion of geographic distribution of Mugil setosus and occurrence of Mugil curema Valenciennes 1836 in the Pacific Ocean are discussed. 


2015 ◽  
Vol 28 (9) ◽  
pp. 3846-3856 ◽  
Author(s):  
Hye-Mi Kim ◽  
Michael A. Alexander

Abstract The vertically integrated water vapor transport (IVT) over the Pacific–North American sector during three phases of ENSO in boreal winter (December–February) is investigated using IVT values calculated from the Climate Forecast System Reanalysis (CFSR) during 1979–2010. The shift of the location and sign of sea surface temperature (SST) anomalies in the tropical Pacific Ocean leads to different atmospheric responses and thereby changes the seasonal mean moisture transport into North America. During eastern Pacific El Niño (EPEN) events, large positive IVT anomalies extend northeastward from the subtropical Pacific into the northwestern United States following the anomalous cyclonic flow around a deeper Aleutian low, while a southward shift of the cyclonic circulation during central Pacific El Niño (CPEN) events induces the transport of moisture into the southwestern United States. In addition, moisture from the eastern tropical Pacific is transported from the deep tropical eastern Pacific into Mexico and the southwestern United States during CPEN. During La Niña (NINA), the seasonal mean IVT anomaly is opposite to that of two El Niño phases. Analyses of 6-hourly IVT anomalies indicate that there is strong moisture transport from the North Pacific into the northwestern and southwestern United States during EPEN and CPEN, respectively. The IVT is maximized on the southeastern side of a low located over the eastern North Pacific, where the low is weaker but located farther south and closer to shore during CPEN than during EPEN. Moisture enters the southwestern United States from the eastern tropical Pacific during NINA via anticyclonic circulation associated with a ridge over the southern United States.


Sign in / Sign up

Export Citation Format

Share Document