walker cell
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 7)

H-INDEX

8
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Ulla K. Heede ◽  
Alexey V. Fedorov ◽  
Natalie J. Burls

Abstract The tropical Pacific response to radiative forcing remains uncertain as projected future changes to the Walker circulation and SST patterns vary substantially among climate models. Here, we study what sets the magnitude and timescales of the response and why they differ across models. Specifically, we compare the fast and slow responses of the tropical Pacific to abrupt CO2 increases (2,4,8,16xCO2) in two configurations of the same model family (CESM) that differ in horizontal resolution and mean biases. We find that the model with a higher resolution shows a transient ocean thermostat-like response to CO2-forcing, with a stronger Walker cell and lack of warming in the eastern Pacific trade wind belts. This fast response lasts for about 50 years and is followed by a slight Walker cell weakening and equatorial warming. The second model, with a coarser resolution, shows a weak and short-lasting ocean thermostat response, followed by pronounced Walker cell weakening and eastern equatorial Pacific warming, similar to the long-term pattern noted in previous studies. These fast and slow responses also manifest in gradual CO2 increase experiments. We relate the magnitude of the fast ocean-thermostat response to the structure of the equatorial thermocline, setting the strength of the Bjerknes feedback. The magnitude and timing of the eastern equatorial Pacific warming are, is turn, related to the competition of the wind-evaporation-SST feedback amplifying the ocean-thermostat against the slowdown of oceanic subtropical cells and extra-tropical warming eroding the thermostat. Different balances between these effects could explain the large spread in the future projections for the tropical Pacific.


2021 ◽  
Author(s):  
Kristofer Döös ◽  
Sara Berglund ◽  
Dipanjan Dey ◽  
Aitor Aldama Campino ◽  
Christophe Menkes

<p>The hydrological cycle of the tropical Pacific Ocean is traced with Lagrangian water mass trajectories in the coupled ocean-atmosphere system.<br>The cycle consists of one half in the atmosphere and one half in the ocean, where the two halves are connected by the evaporation and precipitation regions at the sea surface.<br>The atmospheric part of the water cycle is traced backward from the precipitation at the sea surface of the Warm Pool to the evaporation regions in the eastern tropical Pacific.<br>Reversely, the ocean part of the cycle is also traced from the precipitation to the evaporation regions with water mass trajectories, with emphasis on the part that recirculates within the Tropical Pacific.<br>The air circulation of the Walker Cell is superimposed on the ocean-atmosphere water cell both in the zonal-vertical space as well as in the hydrothermohaline space. This reveals how the ocean and atmosphere are connected, which are, to some extent, governed by the Clausius-Clapeyron relationship in the evaporation regions. </p><p>The Lagrangian trajectories are computed with the trajectory code TRACMASS, where the atmospheric water parcels are advected with the 3D water mass fluxes based on a new water mass conservation method, which includes precipitation.</p>


2020 ◽  
Vol 33 (14) ◽  
pp. 6101-6118 ◽  
Author(s):  
Ulla K. Heede ◽  
Alexey V. Fedorov ◽  
Natalie J. Burls

AbstractDifferent oceanic and atmospheric mechanisms have been proposed to describe the response of the tropical Pacific to global warming, yet large uncertainties persist on their relative importance and potential interaction. Here, we use idealized experiments forced with a wide range of both abrupt and gradual CO2 increases in a coupled climate model (CESM) together with a simplified box model to explore the interaction between, and time scales of, different mechanisms driving Walker circulation changes. We find a robust transient response to CO2 forcing across all simulations, lasting between 20 and 100 years, depending on how abruptly the system is perturbed. This initial response is characterized by the strengthening of the Indo-Pacific zonal SST gradient and a westward shift of the Walker cell. In contrast, the equilibrium response, emerging after 50–100 years, is characterized by a warmer cold tongue, reduced zonal winds, and a weaker Walker cell. The magnitude of the equilibrium response in the fully coupled model is set primarily by enhanced extratropical warming and weaker oceanic subtropical cells, reducing the supply of cold water to equatorial upwelling. In contrast, in the slab ocean simulations, the weakening of the Walker cell is more modest and driven by differential evaporative cooling along the equator. The “weaker Walker” mechanism implied by atmospheric energetics is also observed for the midtroposphere vertical velocity, but its surface manifestation is not robust. Correctly diagnosing the balance between these transient and equilibrium responses will improve understanding of ongoing and future climate change in the tropical Pacific.


2020 ◽  
Vol 59 (6) ◽  
pp. 1077-1090
Author(s):  
Xiao Peng ◽  
Scott Steinschneider ◽  
John Albertson

AbstractWe investigate the predictability of East African short rains at long (up to 12 month) lead times by relating seasonal rainfall anomalies to climate anomalies associated with the predominant Walker circulation, including sea surface temperatures (SST), geopotential heights, zonal and meridional winds, and vertical velocities. The underlying teleconnections are examined using a regularized regression model that shows two periods of high model skill (0–3-month lead and 7–9-month lead) with similar spatial patterns of predictability. We observe large-scale circulation anomalies consistent with the Walker circulation at short lead times (0–3 months) and dipoles of SST and height anomalies over the Mascarene high region at longer lead times (7–9 months). These two patterns are linked in time by anticyclonic winds in the dipole region associated with a perturbed meridional circulation (4–6-month lead). Overall, these results suggest that there is potential to extend forecast lead times beyond a few months for drought impact mitigation applications.


2020 ◽  
Author(s):  
Jeroen van der Lubbe ◽  
Ian Hall ◽  
Steven Barker ◽  
Sidney Hemming ◽  
Janna Just ◽  
...  

<p>The coupled ocean-atmosphere circulation of the Indian Ocean Dipole (IOD) controls monsoon rainfall in eastern Africa and southeast Asia at seasonal to decadal time-scale. In years when the dipole is particularly active, it can lead to catastrophic floods and droughts. A growing body of evidence suggests that IOD variability influenced the continental hydroclimate also at longer timescales in the past and thus may have affected human evolution.  However, long-term continuous high-resolution well-dated records have so far been unavailable to test this hypothesis. In 2016, long-term continuous deep-sea sediment cores have been recovered from the Davie Ridge in the Mozambique Channel during Expedition 361 ‘Southern African Climates’ as part of the International Ocean Discovery Program (IODP).</p><p>Here, we present a more than seven million-year-long multi-proxy record of Mozambique Channel Throughflow (MCT), which is tightly coupled to IOD variability; defined here as the zonal sea surface temperature gradient (ΔSST) between the Indo-Pacific warm pool (IPWP) and the Arabian Sea. We show that the MCT was relatively weak and steady until 2.1 million years ago (Ma), when it started to significantly accelerate with progressively increasing glacial-interglacial amplitude, culminating in high flow speeds from 0.8 Ma onwards. The invigoration of MCT activity coincided with increasing zonal ΔSST, which fuels the atmospheric Walker Cell circulation along the tropical Indian Ocean.  Our results demonstrate that the overall intensification of the Indian Ocean Walker Cell amplified the coupled ocean-atmosphere Indian Ocean zonal circulation at orbital time-scales, which agrees with the heightened glacial continental aridity recorded in other eastern African climate proxy records. We argue that the corresponding progressively drier glacials alternated with relative humid interglacials, providing the climatic-environmental setting –varying at seasonal to orbital timescales- for speciation and global expansion of our genus <em>Homo</em> after 2.1 Ma.</p>


Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 216 ◽  
Author(s):  
Wilmar Loaiza Cerón ◽  
Mary Toshie Kayano ◽  
Rita Valeria Andreoli ◽  
Alvaro Avila ◽  
Teresita Canchala ◽  
...  

The impact of the Atlantic Multidecadal Oscillation (AMO) on the variations in the streamflow in the Atrato River Basin (ARB) during the 1965–2016 period was analyzed here by considering the cold (1965–1994) and warm (1995–2015) phases of this oscillation. The mean streamflow increased after 1994 (AMO phase change). This increase is related to the strengthening of the zonal gradients of the sea surface temperature (SST) and sea level pressure (SLP) between the tropical central Pacific and the tropical Atlantic after 1994 (warm AMO phase). These gradients contributed to strengthen the Walker cell related upward movement over northern and northwestern South America, in particular during November-December (ND). Consistently, the frequency (R20 mm) and intensity (SDII) of extreme daily rainfall events increased during the 1995–2015 period. Our results show a connection between the AMO and the increase in the streamflow in the ARB during the last five decades. These results contribute to the studies of resilience and climate adaptation in the region.


2019 ◽  
Vol 32 (17) ◽  
pp. 5529-5547 ◽  
Author(s):  
Jian Ling ◽  
Yuqing Zhao ◽  
Guiwan Chen

ABSTRACTThe simulated Madden–Julian oscillation (MJO) events in 27 general circulation models (GCMs) are identified using an MJO tracking method. The results suggest that the occurrence frequencies of simulated MJO events can represent a model’s ability to simulate several characteristics of the MJO to a certain extent during boreal winter, such as propagation range, strength, and termination longitude. All tracked MJO events are classified into those that propagate through the Maritime Continent (MC) (MJO-C) and those that do not (MJO-B), and the weakening and blocking effects on MJO propagation by the MC in GCMs were quantified. In general, if a GCM shows a stronger weakening effect on MJO strength over the MC, it tends to produce a stronger blocking effect on MJO propagation over the MC during boreal winter. The barrier effect of the MC on MJO propagation is exaggerated in most GCMs, while it can be underestimated in some GCMs, especially the coupled GCMs. Strong lower-tropospheric premoistening is identified ahead of the MJO convection center when it is over the central MC for MJO-C but not for MJO-B in most GCMs. Such strong premoistening is mainly attributed to the zonal gradient of lower-tropospheric easterly anomalies within the front Walker cell, which could be a precursor leading to the eastward propagation of MJO convection. In contrast to the observation, the role of the background sea surface temperature and land–sea precipitation contrast in the barrier effect on MJO propagation by the MC is not well captured by most GCMs.


2018 ◽  
Vol 31 (19) ◽  
pp. 7719-7738 ◽  
Author(s):  
Guosen Chen ◽  
Bin Wang

Well-organized eastward propagation of the Madden–Julian oscillation (MJO) is found to be accompanied by the leading suppressed convection (LSC) over the Maritime Continent (MC) and the western Pacific (WP) when the MJO convection is in the Indian Ocean (IO). However, it remains unclear how the LSC influences the MJO and what causes the LSC. The present study shows that the LSC is a prevailing precursor for eastward propagation of the MJO across the MC. The LSC enhances the coupling of IO convection and the Walker cell to its east [front Walker cell (FWC)] by increasing the zonal heating gradient. The enhanced FWC strengthens the low-level easterly, which increases boundary layer (BL) convergence and promotes congestus convection to the east of the deep convection; the enhanced congestus convection preconditions the lower to middle atmosphere, which further promotes the transition from congestus to deep convection and leads to eastward propagation of the MJO. The MJO ceases eastward propagation once the FWC decouples from it. Further analysis reveals that LSC has two major origins: one comes from the eastward propagation of the preceding IO dry phase associated with the MJO, and the other develops concurrently with the IO convection. In the latter case, the development of the LSC is brought about by a two-way interaction between the MJO’s tropical heating and the associated tropical–extratropical teleconnection: the preceding IO suppressed convection induces a tropical–extratropical teleconnection, which evolves and forms an anomalous western North Pacific cyclone that generates upper-level convergence and induces significant LSC.


Author(s):  
E. P. Shkolnyy ◽  
A. I. Sushchenko

Study of the El Niño-La Niña is a major challenge for the scientific community. In addition to the impact on weather and climate in different regions of the Earth, this phenomenon is associated with the socio-economic impact for many countries. The task of such a large-scale phenomenon prognosis is associated with considerable difficulties, one of the main problems is the infrequency of its occurrence and changes in the characteristics between the events. Therefore, a comprehensive study of its urgent task for the international scientific community. This paper presents the results of a study of the statistical structure of the fields of geopotential heights of 850 hPa pressure level in the western sector of the Southern hemisphere. The study was conducted using a component analysis. Decomposition fields of principal components in different scales are shown. Filtered field anomalies suggest tendencies of formation of the zonal Walker' cells, characteristic for the warm period of El Niño, La Niña, when the structure of the Walker' cell is less pronounced. Tendencies offset to the east of the Pacific high in the Southern Hemisphere to split it into two parts, as can be seen from the fields of geopotential height anomalies. The zonal circulation Walker' cell in the warm and cold phases of ENSO is clearly appeared in the fields of geopotential heights, when is highlight the part caused by the second principal components.


2016 ◽  
Vol 73 (3) ◽  
pp. 1187-1203 ◽  
Author(s):  
Joanna Slawinska ◽  
Olivier Pauluis ◽  
Andrew J. Majda ◽  
Wojciech W. Grabowski

Abstract A new approach for analyzing multiscale properties of the atmospheric flow is proposed in this study. For that, the recently introduced isentropic streamfunctions are employed here for scale decomposition with Haar wavelets. This method is applied subsequently to a cloud-resolving simulation of a planetary Walker cell characterized by pronounced multiscale flow. The resulting set of isentropic streamfunctions—obtained at the convective, meso-, synoptic, and planetary scales—capture many important features of the across-scale interactions within an idealized Walker circulation. The convective scale is associated with the shallow, congestus, and deep clouds, which jointly dominate the upward mass flux in the lower troposphere. The synoptic and planetary scales play important roles in extending mass transport to the upper troposphere, where the corresponding streamfunctions mainly capture the first baroclinic mode associated with large-scale overturning circulation. The intermediate-scale features of the flow, such as anvil clouds associated with organized convective systems, are extracted with the mesoscale and synoptic-scale isentropic streamfunctions. Multiscale isentropic streamfunctions are also used to extract salient mechanisms that underlie the low-frequency variability of the Walker cell. In particular, the lag of a few days of the planetary scale behind the convective scale indicates the importance of the convective scale in moistening the atmosphere and strengthening the planetary-scale overturning circulation. Furthermore, the mesoscale and synoptic scale lags behind the planetary scale reflect the strong dependence of convective organization on the background shear.


Sign in / Sign up

Export Citation Format

Share Document