scholarly journals The Role of Gravity Wave Breaking in a Case of Upper-Level Near-Cloud Turbulence

2019 ◽  
Vol 147 (12) ◽  
pp. 4567-4588 ◽  
Author(s):  
Dragana Zovko-Rajak ◽  
Todd P. Lane ◽  
Robert D. Sharman ◽  
Stanley B. Trier

Abstract An observed turbulence encounter that occurred outside a mesoscale convective system over the central United States on 3 June 2005 is investigated using observations and high-resolution numerical modeling. Here, the mechanisms associated with the observed moderate-to-severe turbulence during the evolution of this convective system are examined. Comparison between aircraft-observed eddy dissipation rate data with satellite and radar shows that a majority of turbulence reports are located on the south side and outside of a nocturnal mesoscale convective system (MCS), relatively large distances from the active convective regions. Simulations show that divergent storm-induced upper-level outflow reduces the environmental flow on the south side of the MCS, while on the north and northwest side it enhances the environmental flow. This upper-level storm outflow enhances the vertical shear near the flight levels and contributes to mesoscale reductions in Richardson number to values that support turbulence. In addition to the role of the MCS-induced outflow, high-resolution simulations (1.1-km horizontal grid spacing) show that turbulence is largely associated with a large-amplitude gravity wave generated by the convective system, which propagates away from it. As the wave propagates in the region with enhanced vertical shear caused by the storm-induced upper-level outflow, it amplifies, overturns, and breaks down into turbulence. The location of the simulated turbulence relative to the storm agrees with the observations and the analysis herein provides insight into the key processes underlying this event.

2009 ◽  
Vol 137 (6) ◽  
pp. 1972-1990 ◽  
Author(s):  
Stanley B. Trier ◽  
Robert D. Sharman

Abstract Widespread moderate turbulence was recorded on three specially equipped commercial airline flights over northern Kansas near the northern edge of the extensive cirrus anvil of a nocturnal mesoscale convective system (MCS) on 17 June 2005. A noteworthy aspect of the turbulence was its location several hundred kilometers from the active deep convection (i.e., large reflectivity) regions of the MCS. Herein, the MCS life cycle and the turbulence environment in its upper-level outflow are studied using Rapid Update Cycle (RUC) analyses and cloud-permitting simulations with the Weather Research and Forecast Model (WRF). It is demonstrated that strong vertical shear beneath the MCS outflow jet is critical to providing an environment that could support dynamic (e.g., shearing type) instabilities conducive to turbulence. Comparison of a control simulation to one in which the temperature tendency due to latent heating was eliminated indicates that strong vertical shear and corresponding reductions in the local Richardson number (Ri) to ∼0.25 at the northern edge of the anvil were almost entirely a consequence of the MCS-induced westerly outflow jet. The large vertical shear is found to decrease Ri both directly, and by contributing to reductions in static stability near the northern anvil edge through differential advection of (equivalent) potential temperature gradients, which are in turn influenced by adiabatic cooling associated with the mesoscale updraft located upstream within the anvil. On the south side of the MCS, the vertical shear associated with easterly outflow was significantly offset by environmental westerly shear, which resulted in larger Ri and less widespread model turbulent kinetic energy (TKE) than at the northern anvil edge.


2006 ◽  
Vol 63 (1) ◽  
pp. 268-287 ◽  
Author(s):  
G. M. Heymsfield ◽  
Joanne Simpson ◽  
J. Halverson ◽  
L. Tian ◽  
E. Ritchie ◽  
...  

Abstract Tropical Storm Chantal during August 2001 was a storm that failed to intensify over the few days prior to making landfall on the Yucatan Peninsula. An observational study of Tropical Storm Chantal is presented using a diverse dataset including remote and in situ measurements from the NASA ER-2 and DC-8 and the NOAA WP-3D N42RF aircraft and satellite. The authors discuss the storm structure from the larger-scale environment down to the convective scale. Large vertical shear (850–200-hPa shear magnitude range 8–15 m s−1) plays a very important role in preventing Chantal from intensifying. The storm had a poorly defined vortex that only extended up to 5–6-km altitude, and an adjacent intense convective region that comprised a mesoscale convective system (MCS). The entire low-level circulation center was in the rain-free western side of the storm, about 80 km to the west-southwest of the MCS. The MCS appears to have been primarily the result of intense convergence between large-scale, low-level easterly flow with embedded downdrafts, and the cyclonic vortex flow. The individual cells in the MCS such as cell 2 during the period of the observations were extremely intense, with reflectivity core diameters of 10 km and peak updrafts exceeding 20 m s−1. Associated with this MCS were two broad subsidence (warm) regions, both of which had portions over the vortex. The first layer near 700 hPa was directly above the vortex and covered most of it. The second layer near 500 hPa was along the forward and right flanks of cell 2 and undercut the anvil divergence region above. There was not much resemblance of these subsidence layers to typical upper-level warm cores in hurricanes that are necessary to support strong surface winds and a low central pressure. The observations are compared to previous studies of weakly sheared storms and modeling studies of shear effects and intensification. The configuration of the convective updrafts, low-level circulation, and lack of vertical coherence between the upper- and lower-level warming regions likely inhibited intensification of Chantal. This configuration is consistent with modeled vortices in sheared environments, which suggest the strongest convection and rain in the downshear left quadrant of the storm, and subsidence in the upshear right quadrant. The vertical shear profile is, however, different from what was assumed in previous modeling in that the winds are strongest in the lowest levels and the deep tropospheric vertical shear is on the order of 10–12 m s−1.


2009 ◽  
Vol 9 (5) ◽  
pp. 1671-1678 ◽  
Author(s):  
S. Davolio ◽  
D. Mastrangelo ◽  
M. M. Miglietta ◽  
O. Drofa ◽  
A. Buzzi ◽  
...  

Abstract. During the MAP D-PHASE (Mesoscale Alpine Programme, Demonstration of Probabilistic Hydrological and Atmospheric Simulation of flood Events in the Alpine region) Operational Period (DOP, 1 June–30 November 2007) the most intense precipitation event observed south of the Alps occurred over the Venice Lagoon. In the early morning of 26 September 2007, a mesoscale convective system formed in an area of convergence between a south-easterly low level jet flowing along the Adriatic Sea and a north-easterly barrier-type wind south of the Alps, and was responsible for precipitation exceeding 320 mm in less than 12 h, 240 mm of which in only 3 h. The forecast rainfall fields, provided by several convection resolving models operated daily for the D-PHASE project, have been compared. An analysis of different aspects of the event, such as the relevant mechanisms leading to the flood, the main characteristics of the MCS, and an estimation of the predictability of the episode, has been performed using a number of high resolution, convection resolving models (MOLOCH, WRF and MM5). Strong sensitivity to initial and boundary conditions and to model parameterization schemes has been found. Although low predictability is expected due to the convective nature of rainfall, the forecasts made more than 24 h in advance indicate that the larger scale environment driving the dynamics of this event played an important role in favouring the achievement of a relatively good accuracy in the precipitation forecasts.


2019 ◽  
Vol 148 (1) ◽  
pp. 289-311 ◽  
Author(s):  
Adam Varble ◽  
Hugh Morrison ◽  
Edward Zipser

Abstract Simulations of a squall line observed on 20 May 2011 during the Midlatitude Continental Convective Clouds Experiment (MC3E) using 750- and 250-m horizontal grid spacing are performed. The higher-resolution simulation has less upshear-tilted deep convection and a more elevated rear inflow jet than the coarser-resolution simulation in better agreement with radar observations. A stronger cold pool eventually develops in the 250-m run; however, the more elevated rear inflow counteracts the cold pool circulation to produce more upright convective cores relative to the 750-m run. The differing structure in the 750-m run produces excessive midlevel front-to-rear detrainment, reinforcing excessive latent cooling and rear inflow descent at the rear of the stratiform region in a positive feedback. The contrasting mesoscale circulations are connected to early stage deep convective draft differences in the two simulations. Convective downdraft condensate mass, latent cooling, and downward motion all increase with downdraft area similarly in both simulations. However, the 750-m run has a relatively greater number of wide and fewer narrow downdrafts than the 250-m run averaged to the same 750-m grid, a consequence of downdrafts being under-resolved in the 750-m run. Under-resolved downdrafts in the 750-m run are associated with under-resolved updrafts and transport mid–upper-level zonal momentum downward to low levels too efficiently in the early stage deep convection. These results imply that under-resolved convective drafts in simulations may vertically transport air too efficiently and too far vertically, potentially biasing buoyancy and momentum distributions that impact mesoscale convective system evolution.


2008 ◽  
Vol 23 (6) ◽  
pp. 1221-1252 ◽  
Author(s):  
Adam J. French ◽  
Matthew D. Parker

Abstract On 30 March 2006, a convective episode occurred featuring isolated supercells, a mesoscale convective system (MCS) with parallel stratiform (PS) precipitation, and an MCS with leading stratiform (LS) precipitation. These three distinct convective modes occurred simultaneously across the same region in eastern Kansas. To better understand the mechanisms that govern such events, this study examined the 30 March 2006 episode through a combination of an observation-based case study and numerical simulations. The convective mode was found to be very sensitive to both the environmental thermodynamic and wind shear profiles, with variations in either leading to different convective modes within the numerical simulations. Strong vertical shear and moderate instability led to the development of supercells in western Oklahoma. Strong shear oriented parallel to a surface dryline, coupled with dry air in the middle and upper levels, led to the development of the PS linear MCS in central Kansas. Meanwhile, moderate wind shear coupled with high instability and strong linear forcing led to the development of the LS MCS in eastern Kansas. Absent linear forcing, the moderate shear environment in eastern Kansas was supportive of isolated supercells in the numerical experiments. This suggests that the linear initiation mechanism was key to the development of the LS linear MCS. From the results of this study it is concuded that, for this event, localized environmental variations were largely responsible for the eventual convective mode, with the method of storm initiation having an impact only within the weaker shear environment of eastern Kansas.


2013 ◽  
Vol 70 (4) ◽  
pp. 1104-1128 ◽  
Author(s):  
K. Van Weverberg ◽  
A. M. Vogelmann ◽  
W. Lin ◽  
E. P. Luke ◽  
A. Cialella ◽  
...  

Abstract This paper presents a detailed analysis of convection-permitting cloud simulations, aimed at increasing the understanding of the role of parameterized cloud microphysics in the simulation of mesoscale convective systems (MCSs) in the tropical western Pacific (TWP). Simulations with three commonly used bulk microphysics parameterizations with varying complexity have been compared against satellite-retrieved cloud properties. An MCS identification and tracking algorithm was applied to the observations and the simulations to evaluate the number, spatial extent, and microphysical properties of individual cloud systems. Different from many previous studies, these individual cloud systems could be tracked over larger distances because of the large TWP domain studied. The analysis demonstrates that the simulation of MCSs is very sensitive to the parameterization of microphysical processes. The most crucial element was found to be the fall velocity of frozen condensate. Differences in this fall velocity between the experiments were more related to differences in particle number concentrations than to fall speed parameterization. Microphysics schemes that exhibit slow sedimentation rates for ice aloft experience a larger buildup of condensate in the upper troposphere. This leads to more numerous and/or larger MCSs with larger anvils. Mean surface precipitation was found to be overestimated and insensitive to the microphysical schemes employed in this study. In terms of the investigated properties, the performances of complex two-moment schemes were not superior to the simpler one-moment schemes, since explicit prediction of number concentration does not necessarily improve processes such as ice nucleation, the aggregation of ice crystals into snowflakes, and their sedimentation characteristics.


2013 ◽  
Vol 70 (12) ◽  
pp. 3799-3817 ◽  
Author(s):  
Stefan F. Cecelski ◽  
Da-Lin Zhang

Abstract While a robust theoretical framework for tropical cyclogenesis (TCG) within African easterly waves (AEWs) has recently been developed, little work explores the development of low-level meso-β-scale vortices (LLVs) and a meso-α-scale surface low in relation to deep convection and upper-tropospheric warming. In this study, the development of an LLV into Hurricane Julia (2010) is shown through a high-resolution model simulation with the finest grid size of 1 km. The results presented expand upon the connections between LLVs and the AEW presented in previous studies while demonstrating the importance of upper-tropospheric warming for TCG. It is found that the significant intensification phase of Hurricane Julia is triggered by the pronounced upper-tropospheric warming associated with organized deep convection. The warming is able to intensify and expand during TCG owing to formation of a storm-scale outflow beyond the Rossby radius of deformation. Results confirm previous ideas by demonstrating that the intersection of the AEW's trough axis and critical latitude is a preferred location for TCG, while supplementing such work by illustrating the importance of upper-tropospheric warming and meso-α-scale surface pressure falls during TCG. It is shown that the meso-β-scale surface low enhances boundary layer convergence and aids in the bottom-up vorticity development of the meso-β-scale LLV. The upper-level warming is attributed to heating within convective bursts at earlier TCG stages while compensating subsidence warming becomes more prevalent once a mesoscale convective system develops.


2009 ◽  
Vol 137 (10) ◽  
pp. 3316-3338 ◽  
Author(s):  
Kelly M. Mahoney ◽  
Gary M. Lackmann ◽  
Matthew D. Parker

Abstract Momentum transport is examined in a simulated midlatitude mesoscale convective system (MCS) to investigate its contribution to MCS motion. Momentum budgets are computed using model output to quantify the role of specific processes in determining the low-level wind field in the system’s surface-based cold pool. Results show that toward the leading convective line of the MCS and near the leading edge of the cold pool, the momentum field is most strongly determined by the vertical advection of the storm-induced perturbation wind. Across the middle rear of the system, the wind field is largely a product of the pressure gradient acceleration and, to a lesser extent, the vertical advection of the background environmental (i.e., base state) wind. The relative magnitudes of the vertical advection terms in an Eulerian momentum budget suggest that, for gust-front-driven systems, downward momentum transport by the MCS is a significant driver of MCS motion and potentially severe surface winds. Results further illustrate that the contribution of momentum transport to MCS speed occurs mainly via the enhancement of the cold pool propagation speed as higher-momentum air from aloft is transported into the surface-based cold pool.


Sign in / Sign up

Export Citation Format

Share Document