scholarly journals Efficient Approximate Techniques for Integrating Stochastic Differential Equations

2006 ◽  
Vol 134 (10) ◽  
pp. 3006-3014 ◽  
Author(s):  
James A. Hansen ◽  
Cecile Penland

Abstract The delicate (and computationally expensive) nature of stochastic numerical modeling naturally leads one to look for efficient and/or convenient methods for integrating stochastic differential equations. Concomitantly, one may wish to sensibly add stochastic terms to an existing deterministic model without having to rewrite that model. In this note, two possibilities in the context of the fourth-order Runge–Kutta (RK4) integration scheme are examined. The first approach entails a hybrid of deterministic and stochastic integration schemes. In these examples, the hybrid RK4 generates time series with the correct climatological probability distributions. However, it is doubtful that the resulting time series are approximate solutions to the stochastic equations at every time step. The second approach uses the standard RK4 integration method modified by appropriately scaling stochastic terms. This is shown to be a special case of the general stochastic Runge–Kutta schemes considered by Ruemelin and has global convergence of order one. Thus, it gives excellent results for cases in which real noise with small but finite correlation time is approximated as white. This restriction on the type of problems to which the stochastic RK4 can be applied is strongly compensated by its computational efficiency.

2004 ◽  
Vol 2004 (2) ◽  
pp. 307-314 ◽  
Author(s):  
Phailaung Phohomsiri ◽  
Firdaus E. Udwadia

A simple accelerated third-order Runge-Kutta-type, fixed time step, integration scheme that uses just two function evaluations per step is developed. Because of the lower number of function evaluations, the scheme proposed herein has a lower computational cost than the standard third-order Runge-Kutta scheme while maintaining the same order of local accuracy. Numerical examples illustrating the computational efficiency and accuracy are presented and the actual speedup when the accelerated algorithm is implemented is also provided.


2017 ◽  
Author(s):  
Thomas Rößler ◽  
Olaf Stein ◽  
Yi Heng ◽  
Lars Hoffmann

Abstract. Lagrangian particle dispersion models (LPDMs) are indispensable tools to study atmospheric transport processes. The accuracy of trajectory calculations, which form an essential part of LPDM simulations, depends on various factors. Here we focus on truncation errors that originate from the use of numerical integration schemes to solve the kinematic equation of motion. The optimization of numerical integration schemes to minimize truncation errors and to maximize computational speed is of great interest regarding the computational efficiency of large-scale LPDM simulations. In this study we analyzed truncation errors of six explicit integration schemes of the Runge Kutta family, which we implemented in the Massive-Parallel Trajectory Calculations (MPTRAC) model. The simulations were driven by wind fields of the latest operational analysis and forecasts of the European Centre for Medium-range Weather Forecasts (ECMWF) at T1279L137 spatial resolution and 3 h temporal sampling. We defined separate test cases for 15 distinct domains of the atmosphere, covering the polar regions, the mid-latitudes, and the tropics in the free troposphere, in the upper troposphere and lower stratosphere (UT/LS) region, and in the lower and mid stratosphere. For each domain we performed simulations for the months of January, April, July, and October for the years of 2014 and 2015. In total more than 5000 different transport simulations were performed. We quantified the accuracy of the trajectories by calculating transport deviations with respect to reference simulations using a 4th-order Runge-Kutta integration scheme with a sufficiently fine time step. We assessed the transport deviations with respect to error limits based on turbulent diffusion. Independent of the numerical scheme, the truncation errors vary significantly between the different domains and seasons. Especially the differences in altitude stand out. Horizontal transport deviations in the stratosphere are typically an order of magnitude smaller compared with the free troposphere. We found that the truncation errors of the six numerical schemes fall into three distinct groups, which mostly depend on the numerical order of the scheme. Schemes of the same order differ little in accuracy, but some methods need less computational time, which gives them an advantage in efficiency. The selection of the integration scheme and the appropriate time step should possibly take into account the typical altitude ranges as well as the total length of the simulations to achieve the most efficient simulations. However, trying to generalize, we recommend the 3rd-order Runge Kutta method with a time step of 170 s or the midpoint scheme with a time step of 100 s for efficient simulations of up to 10 days time based on ECMWF's high-resolution meteorological data.


2018 ◽  
Vol 11 (2) ◽  
pp. 575-592 ◽  
Author(s):  
Thomas Rößler ◽  
Olaf Stein ◽  
Yi Heng ◽  
Paul Baumeister ◽  
Lars Hoffmann

Abstract. The accuracy of trajectory calculations performed by Lagrangian particle dispersion models (LPDMs) depends on various factors. The optimization of numerical integration schemes used to solve the trajectory equation helps to maximize the computational efficiency of large-scale LPDM simulations. We analyzed global truncation errors of six explicit integration schemes of the Runge–Kutta family, which we implemented in the Massive-Parallel Trajectory Calculations (MPTRAC) advection module. The simulations were driven by wind fields from operational analysis and forecasts of the European Centre for Medium-Range Weather Forecasts (ECMWF) at T1279L137 spatial resolution and 3 h temporal sampling. We defined separate test cases for 15 distinct regions of the atmosphere, covering the polar regions, the midlatitudes, and the tropics in the free troposphere, in the upper troposphere and lower stratosphere (UT/LS) region, and in the middle stratosphere. In total, more than 5000 different transport simulations were performed, covering the months of January, April, July, and October for the years 2014 and 2015. We quantified the accuracy of the trajectories by calculating transport deviations with respect to reference simulations using a fourth-order Runge–Kutta integration scheme with a sufficiently fine time step. Transport deviations were assessed with respect to error limits based on turbulent diffusion. Independent of the numerical scheme, the global truncation errors vary significantly between the different regions. Horizontal transport deviations in the stratosphere are typically an order of magnitude smaller compared with the free troposphere. We found that the truncation errors of the six numerical schemes fall into three distinct groups, which mostly depend on the numerical order of the scheme. Schemes of the same order differ little in accuracy, but some methods need less computational time, which gives them an advantage in efficiency. The selection of the integration scheme and the appropriate time step should possibly take into account the typical altitude ranges as well as the total length of the simulations to achieve the most efficient simulations. However, trying to summarize, we recommend the third-order Runge–Kutta method with a time step of 170 s or the midpoint scheme with a time step of 100 s for efficient simulations of up to 10 days of simulation time for the specific ECMWF high-resolution data set considered in this study. Purely stratospheric simulations can use significantly larger time steps of 800 and 1100 s for the midpoint scheme and the third-order Runge–Kutta method, respectively.


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 785
Author(s):  
Arman Rokhzadi ◽  
Musandji Fuamba

This paper studies the air pressurization problem caused by a partially pressurized transient flow in a reservoir-pipe system. The purpose of this study is to analyze the performance of the rigid column model in predicting the attenuation of the air pressure distribution. In this regard, an analytic formula for the amplitude and frequency will be derived, in which the influential parameters, particularly, the driving pressure and the air and water lengths, on the damping can be seen. The direct effect of the driving pressure and inverse effect of the product of the air and water lengths on the damping will be numerically examined. In addition, these numerical observations will be examined by solving different test cases and by comparing to available experimental data to show that the rigid column model is able to predict the damping. However, due to simplified assumptions associated with the rigid column model, the energy dissipation, as well as the damping, is underestimated. In this regard, using the backward Euler implicit time integration scheme, instead of the classical fourth order explicit Runge–Kutta scheme, will be proposed so that the numerical dissipation of the backward Euler implicit scheme represents the physical dissipation. In addition, a formula will be derived to calculate the appropriate time step size, by which the dissipation of the heat transfer can be compensated.


1998 ◽  
Vol 28 (1) ◽  
pp. 77-93 ◽  
Author(s):  
Terence Chan

AbstractThis paper presents a continuous time version of a stochastic investment model originally due to Wilkie. The model is constructed via stochastic differential equations. Explicit distributions are obtained in the case where the SDEs are driven by Brownian motion, which is the continuous time analogue of the time series with white noise residuals considered by Wilkie. In addition, the cases where the driving “noise” are stable processes and Gamma processes are considered.


Sign in / Sign up

Export Citation Format

Share Document