scholarly journals Synoptic–Dynamic Climatology of Large-Scale Cyclones in the North Pacific

2006 ◽  
Vol 134 (12) ◽  
pp. 3567-3587 ◽  
Author(s):  
Linda M. Keller ◽  
Michael C. Morgan ◽  
David D. Houghton ◽  
Ross A. Lazear

Abstract A climatology of large-scale, persistent cyclonic flow anomalies over the North Pacific was constructed using the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) global reanalysis data for the cold season (November–March) for 1977–2003. These large-scale cyclone (LSC) events were identified as those periods for which the filtered geopotential height anomaly at a given analysis point was at least 100 m below its average for the date for at least 10 days. This study identifies a region of maximum frequency of LSC events at 45°N, 160°W [key point 1 (KP1)] for the entire period. This point is somewhat to the east of regions of maximum height variability noted in previous studies. A second key point (37.5°N, 162.5°W) was defined as the maximum in LSC frequency for the period after November 1988. The authors show that the difference in location of maximum LSC frequency is linked to a climate regime shift at about that time. LSC events occur with a maximum frequency in the period from November through January. A composite 500-hPa synoptic evolution, constructed relative to the event onset, suggests that the upper-tropospheric precursor for LSC events emerges from a quasi-stationary long-wave trough positioned off the east coast of Asia. In the middle and lower troposphere, the events are accompanied by cold thickness advection from a thermal trough over northeastern Asia. The composite mean sea level evolution reveals a cyclone that deepens while moving from the coast of Asia into the central Pacific. As the cyclone amplifies, it slows down in the central Pacific and becomes nearly stationary within a day of onset. Following onset, at 500 hPa, a stationary wave pattern, resembling the Pacific–North American teleconnection pattern, emerges with a ridge immediately downstream (over western North America) and a trough farther downstream (from the southeast coast of the United States into the western North Atlantic). The implications for the resulting sensible weather and predictability of the flow are discussed. An adjoint-derived sensitivity study was conducted for one of the KP1 cases identified in the climatology. The results provide dynamical confirmation of the LSC precursor identification for the events. The upper-tropospheric precursor is seen to play a key role not only in the onset of the lower-tropospheric height falls and concomitant circulation increases, but also in the eastward extension of the polar jet across the Pacific. The evolution of the forecast sensitivities suggest that LSC events are not a manifestation of a modal instability of the time mean flow, but rather the growth of a favorably configured perturbation on the flow.

2021 ◽  
pp. 1-54
Author(s):  
Ying Dai ◽  
Peter Hitchcock

AbstractThe canonical tropospheric response to a weakening of the stratospheric vortex—an equatorward shift of the eddy-driven jet—is mostly limited to the North Atlantic following sudden stratospheric warmings (SSWs). A coherent change in the Pacific eddy-driven jet is notably absent. Why is this so? Using daily reanalysis data, we show that air-sea interactions over the North Pacific are responsible for the basin-asymmetric response to SSWs. Prior to the onset of some SSWs, their tropospheric precursors produce a dipolar SST pattern in the North Pacific, which then persists as the stratospheric polar vortex breaks down following the onset of the SSW. By reinforcing the lower tropospheric baroclinicity, the dipolar SST pattern helps sustain the generation of baroclinic eddies, strengthening the near-surface Pacific eddy-driven jet and maintaining its near-climatological-mean state. This prevents the jet from being perturbed by the downward influence of the stratospheric anomalies. As a result, these SSWs exhibit a highly basin-asymmetric surface response with only the Atlantic eddy-driven jet shifted equatorward. For SSWs occurring without the atmospheric precursors in the North Pacific troposphere, the dipolar SST pattern is absent due to the lack of the atmospheric forcing. In the absence of the dipolar SST pattern and the resultant eddy-mean flow feedbacks, these SSWs exhibit a basin-symmetric surface response with both the Atlantic and the Pacific eddy-driven jets shifted equatorward. Our results provide an ocean-atmosphere coupled perspective on stratosphere-troposphere interaction following SSW events and have potential for improving subseasonal to seasonal forecasts for surface weather and climate.


2011 ◽  
Vol 24 (4) ◽  
pp. 1122-1137 ◽  
Author(s):  
Yi Deng ◽  
Tianyu Jiang

Abstract The modulation of the North Pacific storm track by tropical convection on intraseasonal time scales (30–90 days) in boreal winter (December–March) is investigated using the NCEP–NCAR reanalysis and NOAA satellite outgoing longwave radiation (OLR) data. Multivariate empirical orthogonal function (MEOF) analysis and case compositing based upon the principal components (PCs) of the EOFs reveal substantial changes in the structure and intensity of the Pacific storm track quantified by vertically (925–200 mb) averaged synoptic eddy kinetic energy (SEKE) during the course of a typical Madden–Julian oscillation (MJO) event. The storm-track response is characterized by an amplitude-varying dipole propagating northeastward as the center of the anomalous tropical convection moves eastward across the eastern Indian Ocean and the western-central Pacific. A diagnosis of the SEKE budget indicates that the storm-track anomaly is induced primarily by changes in the convergence of energy flux, baroclinic conversion, and energy generation due to the interaction between synoptic eddies and intraseasonal flow anomalies. This demonstrates the important roles played by eddy–mean flow interaction and eddy–eddy interaction in the development of the extratropical response to MJO variability. The feedback of synoptic eddy to intraseasonal flow anomalies is pronounced: when the center of the enhanced tropical convection is located over the Maritime Continent (western Pacific), the anomalous synoptic eddy forcing partly drives an upper-tropospheric anticyclonic (cyclonic) and, to its south, a cyclonic (anticyclonic) circulation anomaly over the North Pacific. Associated with the storm-track anomaly, a three-band (dry–wet–dry) anomaly in both precipitable water and surface precipitation propagates poleward over the eastern North Pacific and induces intraseasonal variations in the winter hydroclimate over western North America.


2015 ◽  
Vol 17 (1) ◽  
pp. 273-285 ◽  
Author(s):  
Xu Liu ◽  
Xuejuan Ren ◽  
Xiu-Qun Yang

Abstract This study investigates the features of atmospheric circulation and moisture transport associated with two modes of decadal variability in the North Pacific: the Pacific decadal oscillation (PDO) and the North Pacific Gyre Oscillation (NPGO), with emphasis on the multiscale water vapor transport and atmospheric river (AR) over the North Pacific region. During the positive phase of PDO, the geopotential height anomaly at 500-hPa exhibits a Pacific–North American-like pattern. During the positive phase of NPGO, the geopotential height anomaly at 500 hPa features a dipole pattern with a negative anomaly north of 40°N and a positive anomaly south of 40°N over the North Pacific. Associated with the positive PDO phase, the ocean-to-land moisture transport is enhanced between 25° and 35°N and reduced over the northeastern Pacific (25°–62°N, 180°–110°W) for the time-mean integrated vapor transport (IVT). The synoptic poleward transport is suppressed north of 40°N and enhanced south of 40°N. In the positive NPGO phase, the zonal moisture transport is intensified south of 20°N and between 40° and 50°N for the time-mean IVT and weakened over the west coast of North America for the low-frequency (10–100 days) IVT. The synoptic poleward transport is suppressed south of 30°N. The eastern part of the North Pacific AR belt moves southward during positive PDO as the entire North Pacific AR belt shifts slightly northward during positive NPGO. An investigation of AR anomalies during a period over which the PDO and NPGO coexist demonstrates that the AR frequency over the North American western coastal regions is significantly influenced by the conjunction of the PDO and NPGO modes.


1942 ◽  
Vol 36 (3) ◽  
pp. 400-424 ◽  
Author(s):  
Gordon Ireland

When the time comes for the representatives of Japan to face those of China, Great Britain, Holland, Mexico and the United States across a table, to drive the best bargain they can for the continued national life of their island empire in the Pacific, one of the questions to be settled will be the control of the fisheries. Given the tremendous importance of fish in the food and economy of Japan, it will be a fundamental and vital question; and it would seem that for any thorough-going settlement the Soviet Union, with its shores on the Pacific, should be invited to participate in the discussion, if indeed by that time it has not actually gone to war with Japan. A brief review of the history of the problem may be of interest now and helpful to a better understanding later.


2020 ◽  
Author(s):  
Chen Schwartz ◽  
Chaim Garfinkel

<p>The representation of upward and downward stratosphere-troposphere coupling and its influence on the teleconnections of the Madden Julian oscillation (MJO) to the European sector is examined in five subseasonal-to-seasonal (S2S) models. We show that while the models simulate a realistic stratospheric response to transient anomalies in troposphere, they overestimate the downward coupling. The models with a better stratospheric resolution capture a more realistic stratospheric response to the MJO, particularly after the first week of the integration. However, in all models examined here the connection between the MJO and vortex variability is weaker than that observed. Finally, we focus on the MJO-SSW teleconnection in the NCEP model, and specifically initializations during the MJO phase with enhanced convection in the west/central pacific (i.e. 6 and 7) that preceded observed SSW. The integrations that simulated a SSW (as observed) can be distinguished from those that failed to simulate a SSW by the realism of the Pacific response to MJO 6/7, with only the simulations that successfully simulate a SSW capturing the North Pacific low. Furthermore, only the simulations that capture the SSW, subsequently simulate a realistic surface response over the North Atlantic and Europe.</p>


2021 ◽  
Author(s):  
Chen Schwartz ◽  
Chaim Garfinkel

<p>Realistic representation of large-scale stationary waves (SWs) in general circulation models is crucial, as they modulate the trajectories of mid-latitude storms, and shape the distribution of surface temperatures along comparable latitude bands over densely populated areas in the Northern Hemisphere.</p><p>In this work, we assess the fidelity of NH wintertime SWs in 5 operational subseasonal-to-seasonal models. In the troposphere, we found that biases in the North Pacific are more pronounced in NCEP, ECMWF and UKMO models compared to the North Atlantic, while in the CMA and BoM models, large biases in amplitude and phase are present in both sectors. These biases in tropospheric SWs directly affect the simulated SWs in the stratosphere.</p><p>Finally, we attribute the biases in the North Pacific sector, in part, to the mean state biases in the tropics. Longitudinal shifts in the time-mean tropical convection over the Maritime Continent and central Pacific, affect the longitudinal position of the North Pacific trough in the models.</p>


2021 ◽  
pp. 1-43
Author(s):  
Jonathan D. Beverley ◽  
Matthew Collins ◽  
F. Hugo Lambert ◽  
Robin Chadwick

AbstractThe El Niño-Southern Oscillation (ENSO) is the leading mode of interannual climate variability and it exerts a strong influence on many remote regions of the world, for example in northern North America. Here, we examine future changes to the positive-phase ENSO teleconnection to the North Pacific/North America sector and investigate the mechanisms involved. We find that the positive temperature anomalies over Alaska and northern North America that are associated with an El Niño event in the present day are much weaker, or of the opposite sign, in the CMIP6 abrupt 4×CO2 experiments for almost all models (22 out of 26, of which 15 are statistically significant differences). This is largely related to changes to the anomalous circulation over the North Pacific, rather than differences in the equator-to-pole temperature gradient. Using a barotropic model, run with different background circulation basic states and Rossby wave source forcing patterns from the individual CMIP6 models, we find that changes to the forcing from the equatorial central Pacific precipitation anomalies are more important than changes in the global basic state background circulation. By further decomposing this forcing change into changes associated with the longitude and magnitude of ENSO precipitation anomalies, we demonstrate that the projected overall eastward shift of ENSO precipitation is the main driver of the temperature teleconnection change, rather than the increase in magnitude of El Niño precipitation anomalies which are, nevertheless, seen in the majority of models.


Paleobiology ◽  
1989 ◽  
Vol 15 (4) ◽  
pp. 335-356 ◽  
Author(s):  
Geerat J. Vermeij

Geographical restriction to refuges implies the regional extinction of taxa in areas of the previous range falling outside the refuge. A comparison of the circumstances in the refuge with those in areas from which the taxa were eliminated is potentially informative for pinpointing the causes of extinction. A synthesis of data on the geographical and stratigraphical distributions of cool-water molluscs of the North Pacific and North Atlantic Oceans during the late Neogene reveals four patterns of geographical restriction, at least two of which imply that climatic cooling was not the only cause of extinction during the last several million years. These four patterns are (1) the northwestern Pacific restriction, involving 15 taxa whose amphi-Pacific distributions during the late Neogene became subsequently restricted to the Asian side of the Pacific; (2) the northwestern Atlantic restriction, involving six taxa whose early Pleistocene distribution is inferred to have been amphi-Atlantic, but whose present-day and late Pleistocene ranges are confined to the northwestern Atlantic; (3) a vicariant Pacific pattern, in which many ancestral amphi-Pacific taxa gave rise to separate eastern and western descendants; and (4) the circumboreal restriction, involving six taxa whose early Pleistocene distribution, encompassing both the Atlantic and Pacific Oceans, became subsequently limited to the North Pacific. Like the Pliocene extinctions in the Atlantic, previously studied by Stanley and others, the vicariant Pacific pattern is most reasonably interpreted as having resulted from regional extinction of northern populations in response to cooling. The northwestern Pacific and Atlantic restrictions, however, cannot be accounted for in this way. In contrast to the northeastern margins of the Pacific and Atlantic, the northwestern margins are today characterized by wide temperature fluctuations and by extensive development of shore ice in winter. Northeastern, rather than northwestern, restriction would be expected if cooling were the overriding cause of regional extinction. Among the other possible causes of extinction, only a decrease in primary productivity can account for the observed northwestern and circumboreal patterns of restriction. Geographical patterns of body size and the distribution of siliceous deposits provide supporting evidence that primary productivity declined after the Miocene in the northeastern Pacific, but remained high in the northwestern Pacific, and that productivity in the Pacific is generally higher than it is in the Atlantic. The patterns of geographical restriction in the northern oceans thus provide additional support to previous inferences that reductions in primary productivity have played a significant role in marine extinctions.


2008 ◽  
Vol 8 (2) ◽  
pp. 5537-5561 ◽  
Author(s):  
J. Liu ◽  
D. L. Mauzerall ◽  
L. W. Horowitz

Abstract. We analyze the effect of varying East Asian (EA) sulfur emissions on sulfate concentrations in the Northern Hemisphere, using a global coupled oxidant-aerosol model (MOZART-2). We conduct a base and five sensitivity simulations, in which sulfur emissions from each continent are tagged, to establish the source-receptor (S-R) relationship between EA sulfur emissions and sulfate concentrations over source and downwind regions. We find that from west to east across the North Pacific, EA sulfate contributes approximately 80%–20% of sulfate at the surface, but at least 50% at 500 hPa. In addition, EA SO2 emissions account for approximately 30%–50% and 10%–20% of North American background sulfate over the western and eastern US, respectively. The contribution of EA sulfate to the western US at the surface is highest in MAM and JJA, but is lowest in DJF. Reducing EA SO2 emissions will significantly decrease the spatial extent of the EA sulfate influence over the North Pacific both at the surface and at 500 mb in all seasons, but the extent of influence is insensitive to emission increases, particularly in DJF and JJA. We find that EA sulfate concentrations over most downwind regions respond nearly linearly to changes in EA SO2 emissions, but sulfate concentrations over the EA source region increase more slowly than SO2 emissions, particularly at the surface and in winter, due to limited availability of oxidants (mostly H2O2). We find that similar estimates of the S-R relationship for trans-Pacific transport of EA sulfate would be obtained using either sensitivity or tagging techniques. Our findings suggest that future changes in EA sulfur emissions may cause little change in the sulfate induced health impact over downwind continents but SO2 emission reductions may significantly reduce the sulfate related climate cooling over the North Pacific and the United States.


Sign in / Sign up

Export Citation Format

Share Document