Wind Structure Discrepancies between Two Best Track Datasets for Western North Pacific Tropical Cyclones

2016 ◽  
Vol 144 (12) ◽  
pp. 4533-4551 ◽  
Author(s):  
Jinjie Song ◽  
Philip J. Klotzbach

Abstract Symmetric and wavenumber-1 asymmetric characteristics of western North Pacific tropical cyclone (TC) outer wind structures are compared between best tracks from the Joint Typhoon Warning Center (JTWC) and the Japan Meteorological Agency (JMA) from 2004 to 2014 as well as the Multiplatform Tropical Cyclone Surface Wind Analysis (MTCSWA) product from 2007 to 2014. Significant linear relationships of averaged wind radii are obtained among datasets, in which both gale-force and storm-force wind radii are generally estimated slightly smaller (much larger) by JTWC (JMA) than by MTCSWA. These correlations are strongly related to TC intensity relationships discussed in earlier work. Moreover, JTWC (JMA) on average represents a smaller (greater) derived shape parameter than MTCSWA does, implying that JTWC (JMA) typically assesses a more compact (less compact) storm than MTCSWA. For the wavenumber-1 asymmetry, large differences among datasets are found regardless of the magnitude or the direction of the longest radius. JTWC estimates more asymmetric storms than JMA, and it provides greater wavenumber-1 asymmetry magnitudes on average. Asymmetric storms are most frequently oriented toward the east, northeast, and north in JTWC and MTCSWA, whereas they are most frequently oriented toward the southeast, east, and northeast in JMA. The direction of the longest gale-force (storm force) wind radius in JTWC is statistically rotated 18° (32°) clockwise to that in JMA. Although the wind radii in JTWC are of higher quality than those in JMA when using MTCSWA as a baseline, there remains a need to provide a consistent and reliable wind radii estimating process among operational centers.

2012 ◽  
Vol 25 (21) ◽  
pp. 7564-7573 ◽  
Author(s):  
Nam-Young Kang ◽  
James B. Elsner

Research on trends in western North Pacific tropical cyclone (TC) activity is limited by problems associated with different wind speed conversions used by the various meteorological agencies. This paper uses a quantile method to effectively overcome this conversion problem. Following the assumption that the intensity ranks of TCs are the same among agencies, quantiles at the same probability level in different data sources are regarded as having the same wind speed level. Tropical cyclone data from the Joint Typhoon Warning Center (JTWC) and Japan Meteorological Agency (JMA) are chosen for research and comparison. Trends are diagnosed for the upper 45% of the strongest TCs annually. The 27-yr period beginning with 1984, when the JMA began using the Dvorak (1982) technique, is determined to be the most reliable for achieving consensus among the two agencies regarding these trends. The start year is a compromise between including as many years in the data as possible, but not so many that the period includes observations that result in inconsistent trend estimates. The consensus of TC trends between the two agencies over the period is interpreted as fewer but stronger events since 1984, even with the lower power dissipation index (PDI) in the western North Pacific in recent years.


2018 ◽  
Vol 33 (3) ◽  
pp. 799-811 ◽  
Author(s):  
John A. Knaff ◽  
Charles R. Sampson ◽  
Kate D. Musgrave

Abstract This work describes tropical cyclone rapid intensification forecast aids designed for the western North Pacific tropical cyclone basin and for use at the Joint Typhoon Warning Center. Two statistical methods, linear discriminant analysis and logistic regression, are used to create probabilistic forecasts for seven intensification thresholds including 25-, 30-, 35-, and 40-kt changes in 24 h, 45- and 55-kt in 36 h, and 70-kt in 48 h (1 kt = 0.514 m s−1). These forecast probabilities are further used to create an equally weighted probability consensus that is then used to trigger deterministic forecasts equal to the intensification thresholds once the probability in the consensus reaches 40%. These deterministic forecasts are incorporated into an operational intensity consensus forecast as additional members, resulting in an improved intensity consensus for these important and difficult to predict cases. Development of these methods is based on the 2000–15 typhoon seasons, and independent performance is assessed using the 2016 and 2017 typhoon seasons. In many cases, the probabilities have skill relative to climatology and adding the rapid intensification deterministic aids to the operational intensity consensus significantly reduces the negative forecast biases.


2017 ◽  
Vol 98 (11) ◽  
pp. 2337-2349 ◽  
Author(s):  
Munehiko Yamaguchi ◽  
Junichi Ishida ◽  
Hitoshi Sato ◽  
Masayuki Nakagawa

Abstract Tropical cyclone (TC) track forecasts of operational numerical weather prediction (NWP) models have been compared and verified by the Japan Meteorological Agency (JMA) under an intercomparison project of the Working Group on Numerical Experimentation (WGNE) since 1991. This intercomparison has promoted validation of the global models in the tropics and subtropics. The results have demonstrated a steady increase in the global models’ ability to predict TC positions over the past quarter century. The intercomparison study started from verification for TCs in the western North Pacific basin with three global models. Up to the present date, the verification has been extended to all ocean basins where TCs regularly occur, and 12 global models participated in the project. In recent years, the project has been extended to include verification of intensity forecasts and forecasts by regional models. This intercomparison project has seen a significant improvement in TC track forecasts, both globally and in each TC basin. In the western North Pacific, for example, we have succeeded in obtaining an approximately 2.5-day lead-time improvement. The project has also demonstrated the benefits of multicenter track forecasts (i.e., consensus forecasts). Finally, the paper considers future challenges to TC track forecasting by NWP models that have been identified at the World Meteorological Organization’s (WMO’s) Eighth International Workshop on Tropical Cyclones (IWTC-8). We discuss the priorities and key issues in further improving the accuracy of TC track forecasts, reducing cases of large position errors, and enhancing the use of ensemble information.


2010 ◽  
Vol 138 (8) ◽  
pp. 3207-3223 ◽  
Author(s):  
Cheng-Shang Lee ◽  
Kevin K. W. Cheung ◽  
Wei-Ting Fang ◽  
Russell L. Elsberry

Abstract A tropical cyclone (TC) size parameter, which is defined here as the radius of 15 m s−1 near-surface wind speed (R15), is calculated for 145 TCs in the western North Pacific during 2000–05 based on QuikSCAT oceanic winds. For the 73 TCs that intensified to typhoon intensity during their lifetimes, the 33% and 67% respective percentiles of R15 at tropical storm intensity and at typhoon intensity are used to categorize small, medium, and large TCs. Whereas many of the small TCs form from an easterly wave synoptic pattern, the monsoon-related formation patterns are favorable for forming medium to large TCs. Most of these 73 TCs stay in the same size category during intensification, which implies specific physical mechanisms for maintaining TC size in the basin. The 18 persistently large TCs from the tropical storm to the typhoon stage mostly have northwestward or north-northwestward tracks, while the 16 persistently small TCs either move westward–northwestward in lower latitudes or develop at higher latitudes with various track types. For the large TCs, strong low-level southwesterly winds exist in the outer core region south of the TC center throughout the intensification period. The small TCs are more influenced by the subtropical high during intensification. The conclusion is that it is the low-level environment that determines the difference between large and small size storms during the early intensification period in the western North Pacific.


2011 ◽  
Vol 24 (22) ◽  
pp. 5887-5898 ◽  
Author(s):  
Fumin Ren ◽  
Jin Liang ◽  
Guoxiong Wu ◽  
Wenjie Dong ◽  
Xiuqun Yang

Abstract Data homogeneity has become a significant issue in the study of tropical cyclones (TCs) and climate change. In this study, three historical datasets for the western North Pacific TCs from the Joint Typhoon Warning Center (JTWC), Japan Meteorological Agency (JMA), and China Meteorological Administration (CMA) are compared with a focus on TC intensity. Over the past 55 years (1951–2005), significant discrepancies are found among the three datasets, especially between the CMA and JTWC datasets. The TC intensity in the CMA dataset was evidently overestimated in the 1950s and from the late 1960s to the early 1970s, while it was overestimated after 1988 in the JTWC dataset, especially during 1993–2003. Large discrepancies in TC tracks exist in two periods of 1951–early 1960s and 1988–1990s. Further analysis reveals that the discrepancies are obviously related to the TC observational techniques. Before the era of meteorological satellites (1951–the early 1960s), and after the termination of aircraft reconnaissance (since 1988), large discrepancies exist in both TC intensity and track. That the intensity discrepancy was smallest during the period (1973–87) when aircraft reconnaissance data and the Dvorak technique were both available suggests that availability of the aircraft reconnaissance and the Dvorak method helps in reducing the TC intensity discrepancy. For those TCs that were included in all the three datasets, no significant increasing or decreasing trend was found over the past 50 years. Each of the three TC datasets has individual characteristics that make it difficult to tell which one is the best. For TCs that affect China, the CMA dataset has obvious advantages such as more complete and more accurate information.


2017 ◽  
Author(s):  
banglin zhang

In this study the latest changes of tropical cyclone size are analyzed based on linear and quadratic curve fittings of the National Hurricane Center (NHC)/Joint Typhoon Warning Center (JTWC) best track data for the radius of maximum wind (RMW), the average radius of 34-kt wind (AR34), and the storm duration index “storm days” (SD) in three oceanic basins of the North Atlantic (NATL), the Western North Pacific (WPAC) and the Eastern North Pacific (EPAC). The computations are done separately for two categories of tropical cyclones: tropical storms (TS), and hurricanes in NATL and EPAC or typhoons in WPAC (HT). The results show that the RMW trends for TS are positive in all basins, and the RMW trends for HT are positive in the NATL basin, but negative in the WPAC and EPAC basins. The AR34 changes are more complex due to the fact that they reflect not only the strength of tropical cyclones, but also the environmental conditions. The trends of two other data sets, with WPAC dataset from the Japan Meteorological Agency (JMA) and the extended best track dataset for NATL and EPAC from NESDIS/RAMMB, are also consistent with the trends derived from the 16-year best track data. The relationships between storm size and sea surface temperature anomaly and the departure from the zonal mean have also been investigated, and some statistically significant correlations are found.


2020 ◽  
Vol 35 (3) ◽  
pp. 1173-1185 ◽  
Author(s):  
John A. Knaff ◽  
Charles R. Sampson ◽  
Brian R. Strahl

Abstract In late 2017, the Rapid Intensification Prediction Aid (RIPA) was transitioned to operations at the Joint Typhoon Warning Center (JTWC). RIPA probabilistically predicts seven rapid intensification (RI) thresholds over three separate time periods: 25-, 30-, 35-, and 40-kt (1 kt ≈ 0.51 m s−1) increases in 24 h (RI25, RI30, RI35, RI40); 45- and 55-kt increases in 36 h (RI45 and RI55); and 70-kt increases in 48 h (RI70). RIPA’s probabilistic forecasts are also used to produce deterministic forecasts when probabilities exceed 40%, and the latter are included as members of the operational intensity consensus forecast aid. RIPA, initially designed for the western North Pacific, performed remarkably well in all JTWC areas of responsibility (AOR) and is now incorporated into JTWC’s ever improving suite of intensity forecast guidance. Even so, making real-time operational RIPA forecasts exposed some methodological weaknesses such as overprediction of RI for weak/disorganized systems (i.e., systems with maximum winds less than 35 kt), prediction of RI during landfall, input data reliability, and statistical inconsistencies. Modifications to the deterministic forecasts that address these issues are presented, and newly derived and more statistically consistent models are developed using data from all of JTWC’s AORs. The updated RIPA is tested as it would be run in operations and verified using a 2-yr (2018–19) independent sample. The performance from this test indicates the new RIPA—when compared to its predecessor—has improved probabilistic verification statistics, and similar deterministic skill while using fewer predictors to make forecasts.


2020 ◽  
Vol 148 (10) ◽  
pp. 4101-4116
Author(s):  
Yi-Huan Hsieh ◽  
Cheng-Shang Lee ◽  
Hsu-Feng Teng

AbstractA total of 14 tropical cyclones (TCs) that formed from 2008 to 2009 over the western North Pacific are simulated to examine the effects that environmental low-frequency and high-frequency vorticity (more than 10 days and less than 10 days, respectively) have on the formations of TCs [where the maximum surface wind ~25 kt (≈13 m s−1)]. Results show that all the simulations can reproduce the formation of a TC in an environment with a large 850-hPa low-frequency vorticity, even if the high-frequency parts are removed from the initial conditions. High-frequency vorticity mainly affects the timing and location of TC formation in such an environment. The 850-hPa vorticity is also analyzed in 3854 tropical cloud clusters that developed in 1981–2009 and may or may not have formed TCs; this reveals that the strength of the low-frequency vorticity is a crucial factor in TC formation. A tropical cloud cluster is expected to develop into a TC in an environment favorable for TC formation in the presence of a large 850-hPa low-frequency vorticity. The lead time for forecasting the formation of a TC can probably be extended under such conditions.


2012 ◽  
Vol 140 (9) ◽  
pp. 2818-2830 ◽  
Author(s):  
Monika Barcikowska ◽  
Frauke Feser ◽  
Hans von Storch

Abstract Tropical cyclone (TC) activity for the last three decades shows strong discrepancies, deduced from different best track datasets (BTD) for the western North Pacific (WNP). This study analyzes the reliability of BTDs in deriving climate statistics for the WNP. Therefore, TC lifetime, operational parameters [current intensity (CI) number], and tracks are compared (for TCs identified concurrently) in BTD provided by the Joint Typhoon Warning Center (JTWC), the Japan Meteorological Agency (JMA), and the China Meteorological Administration (CMA). The differences between the BTD are caused by varying algorithms used in weather services to estimate TC intensity. Available methods for minimizing these discrepancies are not sufficient. Only if intensity categories 2–5 are considered as a whole, do trends for annually accumulated TC days show a similar behavior. The reasons for remaining discrepancies point to extensive and not regular usage of supplementary sources in JTWC. These are added to improve the accuracy of TC intensity and center position estimates. Track and CI differences among BTDs coincide with a strong increase in the number of intense TC days in JTWC. These differences are very strong in the period of intensive improvement of spatiotemporal satellite coverage (1987–99). Scatterometer-based data used as a reference show that for the tropical storm phase JMA provides more reliable TC intensities than JTWC. Comparisons with aircraft observations indicate that not only homogeneity, but also a harmonization and refinement of operational rules controlling intensity estimations, should be implemented in all agencies providing BTD.


Sign in / Sign up

Export Citation Format

Share Document