scholarly journals Assessment of the Forecast Skill of Multiphysics and Multistochastic Methods within the GRAPES Regional Ensemble Prediction System in the East Asian Monsoon Region

2020 ◽  
Vol 35 (3) ◽  
pp. 1145-1171
Author(s):  
Zhizhen Xu ◽  
Jing Chen ◽  
Zheng Jin ◽  
Hongqi Li ◽  
Fajing Chen

Abstract To more comprehensively and accurately address model uncertainties in the East Asia monsoon region, a single-physics suite, where each ensemble member uses the same set of physics parameterizations as the control member in combination with multiple stochastic schemes, is developed to investigate if the multistochastic schemes that combine different stochastic schemes together can be an alternative to a multiphysics suite, where each ensemble member uses a different set of physics parameterizations (e.g., cumulus convection, boundary layer, surface layer, microphysics, and shortwave and longwave radiation). For this purpose, two experiments are performed for a summer monsoon month over China: one with a multiphysics suite and the other with a single-physics suite combined with multistochastic schemes. Three stochastic schemes are applied: the stochastically perturbed parameterizations (SPP) scheme, consisting of temporally and spatially varying perturbations of 18 parameters in the microphysics, convection, boundary layer, and surface layer parameterization schemes; the stochastically perturbed parameterization tendencies (SPPT) scheme; and the stochastic kinetic energy backscatter (SKEB) scheme. The combination of the three stochastic schemes is compared with the multiphysics suite in the Global and Regional Assimilation and Prediction Enhanced System–Regional Ensemble Prediction System with a horizontal grid spacing of 15 km. Verification results show that, overall, a single-physics suite that combines SPP, SPPT, and SKEB outperforms the multiphysics suite in precipitation verification and verification for upper-air weather variables, 10-m zonal wind, and 2-m temperature in the East Asian monsoon region. The indication is that a single-physics suite combining SPP, SPPT, and SKEB may be an appropriate alternative to a multiphysics suite. This finding lays a foundation for the development and design of future regional and global ensembles.

2014 ◽  
Vol 10 (3) ◽  
pp. 2293-2353 ◽  
Author(s):  
A. Dallmeyer ◽  
M. Claussen ◽  
N. Fischer ◽  
K. Haberkorn ◽  
S. Wagner ◽  
...  

Abstract. The recently proposed global monsoon hypothesis interprets monsoon systems as part of one global-scale atmospheric overturning circulation, implying a connection between the regional monsoon systems and an in-phase behaviour of all northern hemispheric monsoons on annual timescales (Trenberth et al., 2000). Whether this concept can be applied to past climates and variability on longer timescales is still under debate, because the monsoon systems exhibit different regional characteristics such as different seasonality (i.e. onset, peak, and withdrawal). To investigate the interconnection of different monsoon systems during the pre-industrial Holocene, five transient global climate model simulations have been analysed with respect to the rainfall trend and variability in different sub-domains of the Afro-Asian monsoon region. Our analysis suggests that on millennial timescales with varying orbital forcing, the monsoons do not behave as a tightly connected global system. According to the models, the Indian and North African monsoons are coupled, showing similar rainfall trend and moderate correlation in rainfall variability in all models. The East Asian monsoon changes independently during the Holocene. The dissimilarities in the seasonality of the monsoon sub-systems lead to a stronger response of the North African and Indian monsoon systems to the Holocene insolation forcing than of the East Asian monsoon and affect the seasonal distribution of Holocene rainfall variations. Within the Indian and North African monsoon domain, precipitation solely changes during the summer months, showing a decreasing Holocene precipitation trend. In the East Asian monsoon region, the precipitation signal is determined by an increasing precipitation trend during spring and a decreasing precipitation change during summer, partly balancing each other. A synthesis of reconstructions and the model results do not reveal an impact of the different seasonality on the timing of the Holocene rainfall optimum in the different sub-monsoon systems. They rather indicate locally inhomogeneous rainfall changes and show, that single palaeo-records should not be used to characterise the rainfall change and monsoon evolution for entire monsoon sub-systems.


2016 ◽  
Vol 455 ◽  
pp. 196-206 ◽  
Author(s):  
Elizabeth K. Thomas ◽  
Steven C. Clemens ◽  
Youbin Sun ◽  
Warren L. Prell ◽  
Yongsong Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document