scholarly journals EXPRESS: pH-Dependent Flavin Adenine Dinucleotide and Nicotinamide Adenine Dinucleotide Ultraviolet Resonance Raman (UVRR) Spectra at Intracellular Concentration

2021 ◽  
pp. 000370282110255
Author(s):  
Virginia Merk ◽  
Eugen Speiser ◽  
Wolfgang Werncke ◽  
Norbert Esser ◽  
Janina Kneipp

The ultraviolet resonance Raman (UVRR) spectra of the adenine-containing enzymatic redox cofactors nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) in aqueous solution of physiological concentration are compared with the aim of distinguishing between them and their building block adenine in potential co-occurrence in biological materials. At an excitation wavelength of 266 nm, the spectra are dominated by the strong resonant contribution from adenine, nevertheless bands assigned to vibrational modes of the nicotinamide and the flavin unit are found to appear at similar signal strength. Comparison of spectra measured at pH 7 with data obtained pH 10 and pH 3 shows characteristic changes when pH is increased or lowered, mainly due to deprotonation of the flavin and nicotinamide moieties, and protonation of the adenine, respectively.

2020 ◽  
Vol 48 (12) ◽  
pp. 6788-6798 ◽  
Author(s):  
Sunny Sharma ◽  
Ewa Grudzien-Nogalska ◽  
Keith Hamilton ◽  
Xinfu Jiao ◽  
Jun Yang ◽  
...  

Abstract We recently reported the presence of nicotinamide adenine dinucleotide (NAD)-capped RNAs in mammalian cells and a role for DXO and the Nudix hydrolase Nudt12 in decapping NAD-capped RNAs (deNADding) in cells. Analysis of 5′caps has revealed that in addition to NAD, mammalian RNAs also contain other metabolite caps including flavin adenine dinucleotide (FAD) and dephosphoCoA (dpCoA). In the present study we systematically screened all mammalian Nudix proteins for their potential deNADing, FAD cap decapping (deFADding) and dpCoA cap decapping (deCoAping) activity. We demonstrate that Nudt16 is a novel deNADding enzyme in mammalian cells. Additionally, we identified seven Nudix proteins—Nudt2, Nudt7, Nudt8, Nudt12, Nudt15, Nudt16 and Nudt19, to possess deCoAping activity in vitro. Moreover, our screening revealed that both mammalian Nudt2 and Nudt16 hydrolyze FAD-capped RNAs in vitro with Nudt16 regulating levels of FAD-capped RNAs in cells. All decapping activities identified hydrolyze the metabolite cap substrate within the diphosphate linkage. Crystal structure of human Nudt16 in complex with FAD at 2.7 Å resolution provide molecular insights into the binding and metal-coordinated hydrolysis of FAD by Nudt16. In summary, our study identifies novel cellular deNADding and deFADding enzymes and establishes a foundation for the selective functionality of the Nudix decapping enzymes on non-canonical metabolite caps.


1988 ◽  
Vol 42 (2) ◽  
pp. 267-272 ◽  
Author(s):  
Robert Rumelfanger ◽  
Sanford A. Asher ◽  
Mildred B. Perry

Ultraviolet resonance Raman spectroscopy has been used to characterize the polycyclic aromatic hydrocarbon composition of a series of distillates of coal-derived liquids. The UV Raman spectra easily monitor changes in the polycyclic aromatic hydrocarbon composition as a function of distillation temperature. Specific species, such as pyrene, can be determined by judicious choice of excitation wavelength.


Sign in / Sign up

Export Citation Format

Share Document